• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New cloud model could help with climate research

Bioengineer by Bioengineer
February 21, 2024
in Chemistry
Reading Time: 3 mins read
0
Clouds
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

When clouds meet clear skies, cloud droplets evaporate as they mix with dry air. A new study involving researchers from the University of Gothenburg has succeeded in capturing what happens in a model. Ultimately, this could lead to more accurate climate modeling in the future.

Clouds

Credit: University of Gothenburg

When clouds meet clear skies, cloud droplets evaporate as they mix with dry air. A new study involving researchers from the University of Gothenburg has succeeded in capturing what happens in a model. Ultimately, this could lead to more accurate climate modeling in the future.

The clouds in the sky have a significant impact on our climate. Not only do they produce precipitation and provide shade from the sun, they also act as large reflectors that prevent the radiation of heat from the Earth – commonly known as the greenhouse effect.

“Although clouds have been studied for a long time, they are one of the biggest sources of uncertainty in climate models,” explains Bernhard Mehlig, Professor of Complex Systems at the University of Gothenburg. “This is because there are so many factors that determine how the clouds affect radiation. And the turbulence in the atmosphere means that everything is in constant motion. This makes things even more complicated.”

Focusing on the cloud edge

A scientific article in Physical Review Letters presents a new statistical model that describes how the number of water droplets, their sizes and the water vapour interact at the turbulent cloud edge. The distribution of water droplets is important because it affects how clouds reflect radiation.

“The model describes how the droplets shrink and grow at the cloud edge when turbulence mixes in drier air,” adds Johan Fries, a former doctoral student in physics and co-author of the study.

The researchers have identified the most important parameters, and have built their model accordingly. In brief, the model takes into account the laws of thermodynamics and the turbulent motion of the droplets. The model corresponds well with earlier numerical computer simulations, and explains their results.

The importance of evaporation

“But we’re still a long way from the finish line,” continues Professor Mehlig. “Our model is currently able to describe what is happening in one cubic metre of cloud. Say, fifteen years ago it was only one cubic centimetre, so we’re making progress.”

When policymakers discuss climate change, great importance is attached to IPCC climate models. However, according to the IPCC, the microphysical properties of clouds are among the least understood factors in climate science.

“Moreover, the evaporation of droplets is an important process, not only in the context of atmospheric clouds, but also within the field of infectious medicine. Tiny droplets that are produced when we sneeze can contain virus particles. If these droplets evaporate, the virus particles can remain in the air and infect others.”

Professor Mehlig has also co-authored another study that describes how solid particles, such as ice crystals, move within clouds.

“The ice crystals and the water droplets affect each other. But we don’t yet know how.”



DOI

10.1103/PhysRevLett.131.254201

Method of Research

Computational simulation/modeling

Article Title

Lagrangian Supersaturation Fluctuations at the Cloud Edge

Article Publication Date

18-Dec-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Engineering Ultra-Stable Proteins via Hydrogen Bonding

Engineering Ultra-Stable Proteins via Hydrogen Bonding

November 19, 2025
Designing DNA for Controlled Charge Transport

Designing DNA for Controlled Charge Transport

November 18, 2025

Chemoselective Electrolysis Drives Precise Arene Hydroalkylation

November 17, 2025

LHAASO Sheds Light on the Origin of the Cosmic Ray “Knee” Phenomenon

November 16, 2025

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    202 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    118 shares
    Share 47 Tweet 30
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    211 shares
    Share 84 Tweet 53
  • Neurological Impacts of COVID and MIS-C in Children

    90 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

RNA Sequencing Sheds Light on Cucumber Fruit Formation

Validating a Chinese Nursing Information Literacy Scale

Empowering Women Physicians: A Comprehensive Review

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.