• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New Chinese Medical Journal article discusses metabolic reprogramming of tumor-associated macrophages

Bioengineer by Bioengineer
January 6, 2023
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Cancer is a complex disease and although billions of dollars have been spent on finding safe and effective therapeutics for it, there is still scope for significant development. Researchers have targeted a variety of biological entities and processes to treat cancer. One example is the metabolic processes that reprogram tumor-associated macrophages (TAMs), immune cells that play a crucial role in the development and progression of cancer. Under normal circumstances, macrophages—white blood cells that engulf and kill microorganisms, eliminate dead cells, and stimulate the immune system—safeguard the body against disease. However, TAMs do something significantly odd: they participate in the formation of the tumor microenvironment (TME), thus harming the body. Depending on the environmental stimulus and metabolic processes, macrophages differentiate into two classes: anti-tumor M1-like and pro-tumor M2-like macrophages. The latter resemble TAMs. Whereas M1-like macrophages inhibit tumor growth, M2-like macrophages do the exact opposite and thus play a key role in the proliferation of cancer cell.

Key metabolic pathways that can be targeted for immunotherapy-based cancer treatments

Credit: Yi Zhang from Zhengzhou University, China

Cancer is a complex disease and although billions of dollars have been spent on finding safe and effective therapeutics for it, there is still scope for significant development. Researchers have targeted a variety of biological entities and processes to treat cancer. One example is the metabolic processes that reprogram tumor-associated macrophages (TAMs), immune cells that play a crucial role in the development and progression of cancer. Under normal circumstances, macrophages—white blood cells that engulf and kill microorganisms, eliminate dead cells, and stimulate the immune system—safeguard the body against disease. However, TAMs do something significantly odd: they participate in the formation of the tumor microenvironment (TME), thus harming the body. Depending on the environmental stimulus and metabolic processes, macrophages differentiate into two classes: anti-tumor M1-like and pro-tumor M2-like macrophages. The latter resemble TAMs. Whereas M1-like macrophages inhibit tumor growth, M2-like macrophages do the exact opposite and thus play a key role in the proliferation of cancer cell.

Researchers from China recently conducted a literature survey—which was published in Volume 135, Issue 20 of the Chinese Medical Journal on 20 October 2022—to better understand how this happens. Says Prof. Yi Zhang, corresponding author of the article, and Professor and Director of the Biotherapy Center and Cancer Center at The First Affiliated Hospital of Zhengzhou University, “Peripheral blood-polarized and tissue-resident TAMs constitute a tremendous segment of infiltrating myeloid cells in the TME of most malignant solid tumors. Importantly, TAMs display proangiogenic properties. In this review, we elucidate the metabolic reprogramming of TAMs and explore how they sustain immunosuppression to provide a perspective for potential metabolic therapies.”

Tumor cells’ metabolism—defined as the set of biochemical processes that occur to ensure the survival of organisms—plays a key role in cancer cell proliferation. Cancerous cells hijack the body’s physiological systems through metabolic reprogramming of the TME. Such reprogramming contributes to tumorigenesis through the activation of biological processes that support cell survival, proliferation, and growth.

Because of the TME remodeling, TAMs are able to modulate key metabolic pathways involving glucose, lipid, and amino acid metabolism and cause an immunosuppressive TME, thus shielding cancerous cells from the vigilant immune system and enabling their unchecked growth. Owing to the aforementioned reasons, targeting the metabolism-related pathways of TAMs may exert anti-tumor effects. It is therefore important to study TAM-related metabolic targets in the TME. 

“TAMs express a pro-tumor phenotype by increasing glycolysis, fatty acid oxidation, cholesterol efflux, and arginine, tryptophan, glutamate, and glutamine metabolism. Previous studies on the metabolism of TAMs demonstrated that metabolic reprogramming has intimate crosstalk with anti-tumor or pro-tumor phenotypes and is crucial for the function of TAMs themselves. Targeting metabolism-related pathways is emerging as a promising therapeutic modality because of the massive metabolic remodeling that occurs in malignant cells and TAMs,” says Dr. Zhang.

TAMs manipulate metabolic pathways in many different ways. For example, enzymes promoting the metabolism of glucose were found to be over-produced in TAMs isolated from patients with pancreatic cancer. TAMs are also known to alter iron metabolism. Because tumor cells require excess iron, TAMs—key sources of iron—release it into the TME, thus increasing its availability to tumor cells.

These processes can be manipulated, though. Targeting metabolism-related pathways has been shown to be effective in suppressing tumors in mice and even in clinical trials. The inclusion of therapeutics like immune checkpoint inhibitors (ICIs) further increases the efficacy of targeting metabolic therapies. ICIs are drugs that blocks proteins called “checkpoints.” These proteins are synthesized by immune cells as well as cancer cells (which imitate our body’s cells and thereby avoid being detected and destroyed by our own vigilant immune system). Clinical evidence clearly suggests that the efficacy of ICIs is improved when therapeutic strategies targeting metabolism-related pathways are included in the treatment plan.

In summary, further research on metabolic reprogramming, TAMs, and the TME would give rise to newer immunotherapy-based methods for cancer treatment. 

 

***

 

Reference

DOI: https://doi.org/10.1097/CM9.0000000000002426

Authors: Ying Wang1, Dan Wang1, Li Yang1,2,3,4, Yi Zhang1,2,3

Affiliations:

Ying Wang1, Dan Wang1, Li Yang1,2,3,4, Yi Zhang1,2,3,4

1Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University

2School of Life Sciences, Zhengzhou University

3Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou

4State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University



Journal

Chinese Medical Journal

DOI

10.1097/CM9.0000000000002426

Method of Research

Literature review

Subject of Research

Not applicable

Article Title

Metabolic reprogramming in the immunosuppression of tumor-associated macrophages

Article Publication Date

20-Oct-2022

COI Statement

The authors have no conflicting interests

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Trainer Insights on Canine Aggression and Behavior Solutions

August 27, 2025
Genomic Analysis Reveals How Cavefish Evolved to Lose Their Eyes

Genomic Analysis Reveals How Cavefish Evolved to Lose Their Eyes

August 27, 2025

Unraveling Hypospadias: Genetics and Development Insights

August 27, 2025

Dynamic Fusion Model Enhances scRNA-seq Clustering

August 27, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Comorbidity Impact in Neurocognitive Disorder Patients

Mechanical Confinement Shapes Melanoma Plasticity

Impact of Low Blood Pressure Dipping on Pediatric CKD

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.