• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

New center founded to develop more efficient flexible solar cells

Bioengineer by Bioengineer
April 10, 2019
in Science
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

UNIVERSITY PARK, Pa. — New organic materials for creating advanced, flexible, light-weight solar cells and electronics for military and civilian use in remote areas away from power grids will be the focus of a new research center directed by Enrique Gomez, professor of chemical engineering and materials science and engineering at Penn State.

The Center for Self-Assembled Organic Electronics (SOE) will be funded by a $7.5 million, five-year, Multidisciplinary University Research Initiatives grant from the Office of Naval Research.

“This new center is focused on developing strategies for controlling the structure of organic electronic materials at the nanoscale,” Gomez said. “The center researchers will integrate chemical synthesis, theory and simulations, and state-of-the-art characterization, to develop the next generation of materials capable of converting sunlight to electricity.”

Researchers at the center hope to achieve this by creating molecules for solar cells that assemble themselves with nanometer and even molecular precision into a nanostructure needed for organic solar cells to efficiently convert sunlight into electricity. The light-to-electricity conversion process in an organic solar cell starts at the interface between a “donor” material and an “acceptor” material.

The donor material “donates” a photo-excited electron to the acceptor material to begin generating electricity from sunlight. For this process to work properly, a relatively large surface area between the two materials within an organic solar-cell device is crucial for efficient transfer. However, at the same time, the charge has to leave the device to be used for energy. Therefore, organic solar cells require an intricate nanostructure that provides both a relatively large amount of surface area and pathways for charge carriers to exit the device into an external circuit.

Despite these design challenges, organic molecules enable solar cells to be lightweight and flexible, which is currently difficult to achieve with commercial materials. These light and flexible solar cells provide a promising solution to the energy needs of the modern military operating in remote areas around the globe. Civilian applications are envisioned as well.

“Distributed power, or electrical power that is generated and supplied without the need of an electrical grid, is crucial for the growing needs of a military deployed throughout the globe, and for providing power to rural areas,” Gomez said. “Our goal is to create lightweight, flexible and robust solar cells that can be deployed in a variety of environments and scenarios.”

The SOE Center co-director is Alberto Salleo, professor of materials science and engineering at Stanford University. Other faculty in the SOE Center include Scott Milner, the William H. Joyce Chair Professor in the Department of Chemical Engineering at Penn State; John Asbury, associate professor of chemistry at Penn State; Zhenan Bao, professor of chemical engineering at Stanford University; Michael Toney, distinguished staff scientist at Stanford University’s SLAC National Accelerator Laboratory; Giulia Galli, professor of chemistry at the University of Chicago; Baskar Ganapathysubramanian, associate professor of mechanical engineering at Iowa State; and Iain McCulloch, professor of polymer materials at King Abdullah University of Science and Technology in Saudi Arabia and chair in polymer materials at Imperial College London.

More information about the 2019 MURI awards can be found at http://tinyurl.com/yxg8jmxg.

###

Media Contact
Jamie Oberdick
[email protected]

Tags: Biomedical/Environmental/Chemical EngineeringNanotechnology/MicromachinesTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    85 shares
    Share 34 Tweet 21
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Creating the Pediatric Weight Questionnaire for Youth Obesity

Exploring Tadpole Buccopharyngeal Morphology in Sphaenorhynchini

Triglyceride-Glucose and Waist Circumference: Diabetes Risk Insights

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.