• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New cell lines produce NIST monoclonal antibody for improved biologic drugs

Bioengineer by Bioengineer
July 31, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: ©EnCor Biotechnology Inc.

When the National Institute of Standards and Technology (NIST) issued the world's first standardized monoclonal antibody (mAb) in July 2016, the exhaustively analyzed protein known as NISTmAb (NIST Reference Material 8671) was intended as a valuable tool for biopharmaceutical companies. Its purpose: to help ensure the quality of measurement techniques used in the development and manufacture of biologic drug therapies for a wide range of health conditions, including cancers, autoimmune disorders and infectious diseases. Although the molecule has been precisely characterized, the current proprietary method for its production has not.

In a new paper in the journal mAbs, researchers at the Institute for Bioscience and Biotechnology Research (IBBR), a joint institute of NIST and the University of Maryland, describe how they have taken the first step to solve this dilemma: engineering three mouse cell lines to produce nonproprietary versions of NISTmAb that closely resemble the characteristics of the original reference material.

"By creating the means to produce our already well-characterized monoclonal antibody, the NISTmAb, we can now make the measurements that will define the production process as well as the product," said NIST research biologist Zvi Kelman who co-authored the mAbs paper. "From that, we can develop a standardized model for monoclonal antibody biomanufacturing that will give researchers and manufacturers a second valuable reference tool."

Monoclonal antibodies are proteins manufactured in the laboratory that can target specific disease cells, viruses and other antigens (agents that trigger an immune response) for removal from the body or can be used to deliver therapeutic chemicals or radiation to select sites. Since the first commercial mAb was approved in 1986, their impact on medicine has been astounding. Today, five of the 10 top-selling drugs are mAbs with annual sales currently at $100 billion and expected to rise to $150 billion within three years.

As the patents on the original mAb biologics expire or near expiration over the next few years, many biopharmaceutical companies will seek to enter the market with generic versions known as biosimilars.

"Both the manufacturers seeking legal and public approval for their biosimilars and regulators at the Food and Drug Administration must verify that the new drugs match the originals with regard to efficacy, quality and safety," said John Marino, leader of the Biomolecular Structure and Function Group in NIST's Material Measurement Laboratory and another author on the mAbs paper. "Having a rigorously characterized mAb production process, along with our standard NISTmAb protein, will serve as powerful benchmarking tools that should help manufacturers and regulators release new mAb therapeutics and biosimilars with greater confidence."

Quality control is not the only way that the NISTmAb cell lines will make a difference, Marino added.

"Understanding how the NISTmAb is derived will enable investigators to look for ways to optimize the production of other mAbs or overcome commonly shared problems such as contamination or aggregation [protein clumping]," he said.

Equally important, Kelman said, the knowledge and benefits gained from study of the nonproprietary NISTmAb bioprocessing system will be freely available and widely shared.

"Researchers will be able to look at the broad issues currently facing manufacturers of mAb therapeutics with a system that is not proprietary; the NIST cell lines will encourage innovation and exploration that isn't related to specific product development," he explained.

###

Paper: L. Kashi, K. Yandrofski, R.J. Preston, L.W. Arbogast, J.P. Giddens, J.P. Marino, J.E. Schiel and Z. Kelman. Heterologous Recombinant Expression of Non-Originator NISTmAb. mAbs. Published online 30 July 2018. DOI: 10.1080/19420862.2018.1486355

Media Contact

Michael E. Newman
[email protected]
301-975-3025
@usnistgov

http://www.nist.gov

Share12Tweet8Share2ShareShareShare2

Related Posts

Visual Aids Boost Reading Skills in Autism Interventions

October 15, 2025

Exploring Immunometabolism’s Role in Heart Failure

October 15, 2025

Emotional Fatigue: Nurses Battling Burnout in Ghana

October 15, 2025

Mapping Lymph Node Metastasis in Lung Adenocarcinoma

October 15, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1244 shares
    Share 497 Tweet 311
  • New Study Reveals the Science Behind Exercise and Weight Loss

    105 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    92 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Visual Aids Boost Reading Skills in Autism Interventions

Exploring Immunometabolism’s Role in Heart Failure

Revolutionary Graph Neural Networks Predict Molecular Properties

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.