• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, December 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New catalyst paves way for carbon neutral fuel

Bioengineer by Bioengineer
June 21, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Australian scientists have paved the way for carbon neutral fuel with the development of a new efficient catalyst that converts carbon dioxide (CO2) from the air into synthetic natural gas in a 'clean' process using solar energy.

Undertaken by University of Adelaide in collaboration with CSIRO, the research could make viable a process that has enormous potential to replace fossil fuels and continue to use existing carbon-based fuel technologies without increasing atmospheric CO2.

The catalyst the researchers have developed effectively drives the process of combining CO2 with hydrogen to produce methane (the main component of the fossil fuel natural gas) and water. Currently, natural gas is one of the main fuels used for industrial activities.

"Capturing carbon from the air and utilising it for industrial processes is one strategy for controlling CO2 emissions and reducing the need for fossil fuels," says University of Adelaide PhD candidate Renata Lippi, first author of the research published online ahead of print in the Journal of Materials Chemistry A.

"But for this to be economically viable, we need an energy efficient process that utilises CO2 as a carbon source.

"Research has shown that the hydrogen can be produced efficiently with solar energy. But combining the hydrogen with CO2 to produce methane is a safer option than using hydrogen directly as an energy source and allows the use of existing natural gas infrastructure.

"The main sticking point, however, is the catalyst – a compound needed to drive the reaction because CO2 is usually a very inert or unreactive chemical."

The catalyst was synthesised using porous crystals called metal-organic frameworks which allow precise spatial control of the chemical elements.

"The catalyst discovery process involved the synthesis and screening of more than one hundred materials. With the help of CSIRO's rapid catalyst testing facility we were able to test all of them quickly allowing the discovery to be made in a much shorter period of time," said Dr Danielle Kennedy, AIM Future Science Platform Director with CSIRO. "We hope to continue collaborating with the University of Adelaide to allow renewable energy and hydrogen to be applied to chemical manufacturing by Australian industry."

With other catalysts there have been issues around poor CO2 conversion, unwanted carbon-monoxide production, catalyst stability, low methane production rates and high reaction temperatures.

This new catalyst efficiently produces almost pure methane from CO2. Carbon-monoxide production has been minimised and stability is high under both continuous reaction for several days and after shutdown and exposure to air. Importantly, only a small amount of the catalyst is needed for high production of methane which increases economic viability. The catalyst also operates at mild temperatures and low pressures, making solar thermal energy possible.

"What we've produced is a highly active, highly selective (producing almost pure methane without side products) and stable catalyst that will run on solar energy," says project leader Professor Christian Doonan, Director of the University's Centre for Advanced Nanomaterials. "This makes carbon neutral fuel from CO2 a viable option."

###

Media Contact:

Professor Christian Doonan, Centre for Advanced Nanomaterials, University of Adelaide. +61 (0)8 8313 5770, Mobile: +61 (0)468 736 709, [email protected]

Ms Renata Lippi, PhD candidate, University of Adelaide. Phone: +61 (0)3 9545 2964, Mobile: +61 (0)420 652 247, [email protected]

Robyn Mills, Media Officer, Phone: +61 (0)8 8313 6341, Mobile: +61 (0)410 689 084, [email protected]

Media Contact

Christian Doonan
[email protected]
61-046-873-6709
@UniofAdelaide

http://www.adelaide.edu.au

http://dx.doi.org/10.1039/C7TA00958E

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Drought Stress: PHD Gene Expression in Alfalfa

December 26, 2025
Temperature and Heat Penetration in Canned vs. Pouched Whelk

Temperature and Heat Penetration in Canned vs. Pouched Whelk

December 26, 2025

Unveiling Genetic Factors Affecting Milk Fat in Holsteins

December 26, 2025

Halophilic Bacteria: Combatting Salt Stress with EPS and IAA

December 26, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

GSK-J4 Inhibits Tumors in Lung Cancer Cells

Zinc Oxide Resveratrol Nanoparticles Protect Liver from Levofloxacin

Linking Triglyceride Glucose Index to DVT Post-Knee Surgery

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.