• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New cancer therapy eliminates toxic delivery vehicles for microRNA

Bioengineer by Bioengineer
August 2, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Purdue University

Researchers at Purdue University have discovered a mechanism for delivering tumor-suppressing microRNAs that eliminates the need for toxic delivery vehicles.

MicroRNAs, or short strands of RNA, play a key role in regulating gene expression. In the lab, they've been successful in shrinking tumors; the best of them act like a "multidrug cocktail." However, getting the microRNA to the tumor hasn't been easy.

"RNAs are inherently unstable; they're subject to being degraded in the bloodstream. It's been hypothesized that if we want to use RNA as a therapy, we have to protect it," said Andrea Kasinski, a biology professor at Purdue who worked on the study. "Protective vehicles are usually some sort of nanoparticle, often a lipid-encapsulated particle. Although the RNA is protected, the protection typically comes at a price.

These particles tend to be a little larger, so penetrating the dense architecture of the tumor can be difficult, she said. Many of these lipids are also toxic.

In an attempt to solve this problem, Kasinski's team abandoned the delivery vehicle entirely. Instead, they conjugated the RNA to a molecule of folate. The folate receptor is overexpressed on cancer cells but very low on normal cells, which is why they can target a tumor and avoid healthy cells. Folate is also essential to the human diet, which eliminates the toxicity problem.

"Folate is generally pro-growth. That's why cancer cells overexpress the receptor — they want more folate," Kasinski said. "We're just hijacking that idea and saying, 'Okay, you can have all the folate you want, but we're going to conjugate it to a warhead that will hopefully knock out the cancer cell.'"

Unprotected RNAs can be degraded by two mechanisms — an exonuclease, which cuts the ends and chews inward, or an endonuclease, which cuts into the middle. By attaching the RNA to a folate, the researchers protected at least one end. Whether this is the end that usually gets chewed into, they're not sure, but folate appears to stabilize the RNA.

As cancer treatment moves toward targeted therapies, drug resistance is becoming a cause for concern. Cancer cells evolved rapidly, so if the agent used to treat it only targets one gene, that gene is likely to become resistant. MicroRNA often have many relevant targets, making it unlikely that the cancer cells will develop resistance.

"We think microRNAs are exceptional for that reason," Kasinski said.

This seems like a promising method for cancer treatment, but so far, it's only been tested in mice. The same microRNA used in this study, miR-34a, made it to clinical trial and failed. Kasinski's team believes that one of the reasons it failed is because of the delivery vehicle, but there's no way to be sure. Even if the RNA is somehow toxic, they're delivering it at a much lower dose than what was used in the trial, and whatever isn't taken up by the tumor is cleared from the organism very fast.

While this kind of therapy may not replace other methods for cancer treatment, it could help make others more effective. The microRNA in question is cytostatic, not cytotoxic — it won't kill a cell, but it will stop it from growing. Given in combination with chemotherapy, it would break down the cells' defenses, making them more sensitive to the cytotoxic agent.

"I think everything we do scientifically, especially in a cancer lab, moves us closer to an effective cancer therapy. But there's still more we need to do," Kasinski said. "Maybe there are other microRNAs that will be better."

###

This research was funded by Pathway to Independence, the Purdue Center for Cancer Research, the Indiana Clinical and Translational Sciences Institute and the National Center for Advancing Translational Sciences.

Media Contact

Kayla Zacharias
[email protected]
765-494-9318
@PurdueUnivNews

http://www.purdue.edu/

Related Journal Article

http://dx.doi.org/10.1126/scitranslmed.aam9327

Share12Tweet8Share2ShareShareShare2

Related Posts

Advancing Neuronal Regeneration with Biomaterials and Stem Cells

October 30, 2025

Leg and Foot Amputations Surge 65% in Illinois Hospitals from 2016 to 2023

October 30, 2025

Lactylation Biomarker Mechanisms in Neonatal Brain Damage

October 30, 2025

Imidacloprid Linked to Bladder Cancer Progression

October 30, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1292 shares
    Share 516 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    202 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advancing Neuronal Regeneration with Biomaterials and Stem Cells

Leg and Foot Amputations Surge 65% in Illinois Hospitals from 2016 to 2023

Lactylation Biomarker Mechanisms in Neonatal Brain Damage

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.