• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New breakthrough in battery charging technology

Bioengineer by Bioengineer
April 24, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: UNIST

A team of researchers, affiliated with UNIST has developed a single-unit, photo-rechargeable portable power source based on high-efficiency silicon solar cells and lithium-ion batteries (LIBs).

This newly-developed power source is designed to work under sunlight and indoor lighting, allowing users to power their portable electronics anywhere with access to light. In addition, the new device could power electric devices even in the absence of light.

In this work, the team of Professor Sang-Young Lee and Professor Kwanyoung Seo of Energy and Chemical Engineering at UNIST presented a new class of monolithically integrated, portable PV-battery systems (denoted as 'SiPV-LIBs') based on miniaturized crystalline Si photovoltaics (c-Si PVs) and printed solid-state lithium-ion batteries (LIBs). The device uses a thin-film printing technique, in which the solid-state LIB is directly printed on the high-efficiency c-Si PV module.

"This device provides a solution to fix both the energy density problem of batteries and the energy storage concerns of solar cells," says Professor Lee. "More importantly, batteries have relatively high power and energy densities under direct sunlight, which demonstrates its potential application as a solar-driven infinite energy conversion/storage system for use in electric vehicles and portable electronics."

According to the research team, this single-unit PV-LIB device exhibits exceptional photo-electrochemical performance and design compactness that lie far beyond those achievable by conventional PVs or LIBs alone. It also displays unprecedented improvements in photo-charging (rapid charging in less than 2 min with a photo-electric conversion/storage efficiency of 7.61%).

In the study, the research team fabricated a solid-state LIB with a bipolar cell configuration directly on the aluminium (Al) electrode of a c-Si PV module through an in-series printing process. To enable the seamless architectural/electrical connection of the two different energy systems, the Al metal layer is simultaneously used as a current collector of the LIB, as well as an electrode for solar cells. This allows the battery to be charged without the loss of energy.

Professor Seo and his team have successflly implemented lossless c-Si PV modules by designing rear electrode-type solar cells. Using single-junction solar cells to fabricate solar cell modules may cause energy loss, which can be prevented by the rear electrode-type design. They also simplified the manufacturing process, using the small solar cell arragements formed on a single Si substrate substrate.

In the study, Professor Lee and his research team connected the device to various portable electronics to explore its practical use. They fabricated a monolithically integrated smartcard by inserting the SiPV-LIB device into a pre-cut credit card. Then, electric circuits were drawn on the back of the credit card using a commercial Ag pen to connect the SiPV-LIB device with an LED lamp. The SiPV-LIB device was also electrically connected with a smartphone or MP3 player and its potential application as a supplementary portable power source was explored under sunlight illumination.

The SiPV-LIB device was capable of fully charging under sunlight illumination after only 2 min. It also showed decent photo-rechargeable electric energy storage behaviour even at a high temperature of 60°C and even at an extremely low light intensity of 8 mWcm-2, which corresponds to the intensity in a dimly-lit living room.

"The SiPV-LIB device presented herein shows great potential as a photo-rechargeable mobile power source that will play a pivotal role in the future era of ubiquitous electronics," says Professor Lee.

The results of the study will be featured on the front cover of the April 2017 issue of the world-renowned journal Energy & Environmental Science (EES). This work has been supported by the Basic Research Program and the Wearable Platform Materials Technology Center through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (MSIP). It was also supported by the Development Program of the Korea Institute of Energy Research (KIER).

###

Journal Reference

Han-Don Um, et al., "Monolithically integrated, photo-rechargeable portable power sources based on miniaturized Si solar cells and printed solid-state lithium-ion batteries," Energy and Environmental Science, (2017).

Media Contact

JooHyeon Heo
[email protected]
82-522-171-223

home

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Innovative Adhesive Formula Boosts Pesticide Deposition Efficiency

Innovative Adhesive Formula Boosts Pesticide Deposition Efficiency

November 5, 2025

Impact of RISE Program on Contraceptive Equity in Uganda

November 5, 2025

Common Synaptic Pathways in Alzheimer’s and Parkinson’s Disease Open New Avenues for Treatment

November 5, 2025

Novel Asymmetric Stress Techniques Enhance Dislocation Density in Brittle Superconductors for Improved Vortex Pinning

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Innovative Adhesive Formula Boosts Pesticide Deposition Efficiency

Impact of RISE Program on Contraceptive Equity in Uganda

Common Synaptic Pathways in Alzheimer’s and Parkinson’s Disease Open New Avenues for Treatment

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.