• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New biomarkers predict outcome of cancer immunotherapy

Bioengineer by Bioengineer
January 8, 2018
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Nowadays, melanoma and lung cancer can be combatted effectively through immunotherapy, which makes targeted use of the immune system's normal function of regularly examining the body's tissue for pathogens and damages. Specific inhibitors are used to activate immune cells in a way that makes them identify cancer cells as foreign bodies and eliminate them. This way, the immune system can boost its often weak immune response to allow it to even detect and destroy metastatic cancer cells. Immunotherapy thus makes it possible to control cancer cells in up to 50 percent of patients, in some cases even curing them altogether.

Not all respond to immunotherapy

However, around half of cancer patients do not respond to immunotherapy, but still have to put up with its side effects. A team of researchers from the University of Zurich and the UniversityHos-pital Zurich has now used a novel method to find out which patients are likely to respond positive-ly to immunotherapy. The researchers were able to identify biomarkers in the blood that indicate whether the therapy is highly likely to be effective even before treatment is commenced.

"The blood counts of patients should be analyzed for these biomarkers when making a decision about immunotherapy. This will dramatically increase the share of patients who will benefit from this type of therapy," says Professor Burkhard Becher from the Institute of Experimental Immunol-ogy at UZH. "At the same time, it makes it possible to directly move on to different methods in cases where immunotherapy won't work – without losing valuable time."

High-dimensional cell analysis

The researchers worked hand in hand with the Department of Dermatology of the UniversityHospi-tal Zurich to examine biomarkers in 40 blood samples of 20 patients, both before and 12 weeks after immunotherapy. For this, they used the high-dimensional "cytometry by time of flight" (Cy-TOF) cell analysis method, which analyzes cells for up to 50 different proteins one cell at a time. The researchers were thus able to differentiate every single cell and document its activation sta-tus. Even nuanced differences between the patient samples were recorded in detail.

Recognizing molecular patterns

After analyzing the cells, the researchers examined the data together with employees of the Swiss Institute of Bioinformatics at UZH in terms of molecular patterns that could predict therapeu-tic success. "Even before the start of a therapy, we observed a subtle and weak immune re-sponse in the blood, and identified this molecular pattern as the immune cells CD14+CD16−HLA-DRhi," says Burkhard Becher. For the finding to be easily verifiable, the biomarkers should be easi-ly detectable; indeed, the blood count was able to be validated using conventional methods in a second, independent cohort of more than 30 people.

Dawning of precision medicine

"Together with comprehensive, precisely structured biobanking, this study represents a major step towards precision medicine," says Professor Mitch Levesque of the Department of Dermatology at the UniversityHospital Zurich. Before they can be used clinically, the insights gained must now be applied in independent studies with higher patient numbers. The method using biobanking, high-dimensional cytometry, and computer-aided pattern recognition should also be useful in clinical decision support and developing new therapeutic approaches when it comes to other clinical pictures.

###

Literature:

Carsten Krieg, Malgorzata Nowicka, Silvia Guglietta, Sabrina Schindler, Felix J Hartmann, Lukas M Weber, Reinhard Dummer, Mark D Robinson, Mitchell P Levesque & Burkhard Becher. High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy. Nature Medicine, 8 January 2018. Doi: 10.1038/nm.4466

Media Contact

Burkhard Becher
[email protected]
41-446-353-701
@uzh_news

http://www.uzh.ch

http://dx.doi.org/10.1038/nm.4466

Share12Tweet7Share2ShareShareShare1

Related Posts

HOXA10 and TWIST2 Control Embryo Implantation Transition

November 11, 2025

Fear of Progression in Caregivers of Cancer Patients

November 11, 2025

CAR-Macrophage Therapy Eases Liver Fibrosis in Mice

November 11, 2025

KLC3 Fuels Gastric Cancer via SLC2A5-MAPK

November 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    316 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    208 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1304 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

HOXA10 and TWIST2 Control Embryo Implantation Transition

Fear of Progression in Caregivers of Cancer Patients

CAR-Macrophage Therapy Eases Liver Fibrosis in Mice

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.