• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New anti-counterfeit technique packs two light-reactive images into one material

Bioengineer by Bioengineer
May 30, 2024
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Growing concern about data theft and counterfeiting has inspired increasingly sophisticated security technologies, like hologram seals, that can help verify the authenticity of currency, passports and other important documents. However, as security technologies evolve, so do the techniques criminals use to get past them. To stay one step ahead of these bad actors, researchers report in ACS’ Langmuir that they have developed a new photopatterning technique that creates two light-reactive images on one material.

New anti-counterfeit technique packs two light-reactive images into one material

Credit: Adapted from Langmuir 2024, DOI: 10.1021/acs.langmuir.4c01297

Growing concern about data theft and counterfeiting has inspired increasingly sophisticated security technologies, like hologram seals, that can help verify the authenticity of currency, passports and other important documents. However, as security technologies evolve, so do the techniques criminals use to get past them. To stay one step ahead of these bad actors, researchers report in ACS’ Langmuir that they have developed a new photopatterning technique that creates two light-reactive images on one material.

Previous research teams have struggled to manufacture similar “dual-mode” films, where two patterns can be separately stored and separately viewed, because producing the second image often damages the quality of the first one. To prevent this interference, Lang Qin, Yanlei Yu and colleagues from Fudan University created two different types of images — a polarization pattern and a structural pattern — within the same film. For the film’s material, they used an azobenzene-containing liquid crystal polymer (ALCP) because of azobenzene’s ability to create sharp images with polarized light (light that’s been filtered so all the waves are aligned in a specific direction) and because LCPs are easy to manipulate into intricate patterns for vibrant structural images.

To construct their dual-patterned film, the researchers started with a layer of ALCP. For the structural image, they imprinted a micropatterned “FDU” (for Fudan University) into the polymer, like pressing a pattern into a wax seal on an envelope, and then cured the image with green light. To create the polarization pattern on top of the structural image, the researchers placed a stencil of the university’s seal over the film and then exposed it to polarized light, which changed the orientation of the azobenzene molecules in the polymer. The process created a pattern that’s not visible in ambient light but is revealed in polarized light.

Under ordinary light, the resulting film showed the FDU letters as the light reflected off the structural image. Then the film revealed the university’s seal when polarized light shone through it. Because both images are created without chemically changing the material’s molecular structure, the film has the added benefit of being rewritable, allowing the user to pattern new images when needed. The researchers say their dual-mode, ambient and polarized light film has potential value for a wide variety of high-level security applications, like seals for authenticating paper money or ID badges.

The authors acknowledge funding from the National Natural Science Foundation of China and the Innovation Program of the Shanghai Municipal Education Commission.

###

The American Chemical Society (ACS) is a nonprofit organization chartered by the U.S. Congress. ACS’ mission is to advance the broader chemistry enterprise and its practitioners for the benefit of Earth and all its people. The Society is a global leader in promoting excellence in science education and providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, eBooks and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a leader in scientific information solutions, its CAS division partners with global innovators to accelerate breakthroughs by curating, connecting and analyzing the world’s scientific knowledge. ACS’ main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact [email protected].

Note: ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies.

Follow us: X, formerly Twitter | Facebook | LinkedIn | Instagram



Journal

Langmuir

DOI

10.1021/acs.langmuir.4c01297

Article Title

“Dual-Mode Patterns Enabled by Photofluidization of an Azobenzene-Containing Linear Liquid Crystal Copolymer”

Article Publication Date

19-May-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Durable and Flexible Porous Crystals Showcase Exceptional Gas Sorption Capabilities

Durable and Flexible Porous Crystals Showcase Exceptional Gas Sorption Capabilities

August 25, 2025
Rice’s Martí, Sarlah, and Wang Receive National American Chemical Society Honors

Rice’s Martí, Sarlah, and Wang Receive National American Chemical Society Honors

August 25, 2025

Molecular Compound Enables Photoinduced Double Charge Accumulation

August 25, 2025

Astronomers Chart Stellar ‘Polka Dots’ with NASA’s TESS and Kepler Missions

August 25, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    144 shares
    Share 58 Tweet 36
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Rising Polysubstance Use in Youth Opioid Overdoses Correlates with Age

Flamingos Unlock the Secret to Longevity, New Study Finds

Vesalius Cell-Mapping Tool Offers In-Depth Multi-Layered Insights into Cancer Behavior

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.