• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New animal models for hepatitis C could pave the way for a vaccine

Bioengineer by Bioengineer
July 19, 2017
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C–a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated–it might be worth even more.

The reason is that the disease shows no outward signs, and more than 80 percent of sufferers go undiagnosed. So while an effective cure does exist, what's most needed is a vaccine that can prevent infection in the first place.

Charlie Rice, the Maurice R. and Corinne P. Greenberg Professor in Virology at The Rockefeller University, has been working for decades to develop just that; in fact, his previous research lead to the development of the cure for hepatitis C infection that first became available in 2015. But his research, and the field in general, have been stymied by a lack of animal models that can be used to study the interaction between the disease and the immune system.

Now, Rice and his colleagues have uncovered a method to mimic the disease in rodents. In work published in Science, the team of researchers describes how they discovered a virus that is closely related to hepatitis C, but is able to infect rats and mice. The researchers found that this new animal model recapitulates much of the human disease, a breakthrough that should accelerate hepatitis C vaccine research.

A breakthrough from the streets of New York

Researchers around the world rely heavily on animal models to study human disease. "We need to use animals to watch the disease develop over time and monitor how the immune system responds," explains Eva Billerbeck, a research associate in the Rice lab and lead author on the new research. "This hasn't been feasible for the hepatitis C virus, which has made our work very difficult."

The problem is that hepatitis C is a highly specific virus, infecting only humans and chimpanzees. This means that researchers must rely on blood samples and liver biopsies from infected patients to study the disease. These limited and infrequent samples provide only partial information about how the disease progresses and make it difficult to test new vaccines.

In 2014, however, there was an unexpected breakthrough. While studying the pathogens that infect common rats on the streets of New York City, Ian Lipkin, a professor at Columbia University, discovered a rodent hepacivirus that belongs to the same family of viruses as hepatitis C. Lipkin and his colleague Amit Kapoor quickly shared the virus with the Rice lab, hoping that it would enable them to create a rodent version of the disease.

Mouse models for acute and chronic hepatitis C

Mice are the preferred animal model for much of modern biological research, with a host of genetic tools and techniques that make mechanistic studies possible. Rice and his team, including researchers in Copenhagen, led by Troels K. H. Scheel and Jens Bukh, set out to explore whether the rat virus could also infect mice. They isolated the hepacivirus from rats and exposed standard laboratory mice to the disease. The experiment worked: the mice developed a hepacivirus infection that mimicked many of the features of human hepatitis C.

There was one notable difference, however. "In human patients, hepatitis C virus infection has two outcomes," Billerbeck explains. "Initially, it is acute, and a small percentage of patients fully recover from infection. However, most people progress to a chronic form of the disease that will continue to affect them unless they are treated." Rice and his team found that mice with a healthy immune system experience the acute form of the disease and then recover, while immune-compromised animals become chronically infected and remain so even after their immune systems are restored.

The researchers are now using their new animal models to gain insight into how hepatitis C infection progresses, and to understand how the body reacts. "This research will help unravel mechanisms of liver infection, virus clearance, and disease mechanisms," Rice says, " which should prove valuable as we work to develop and test hepatitis C vaccines that can help to finally eradicate the disease around the world."

###

Media Contact

Katherine Fenz
[email protected]
212-327-7913
@rockefelleruniv

http://www.rockefeller.edu

https://www.rockefeller.edu/news/20161-new-animal-models-hepatitis-c-pave-way-vaccine/

Related Journal Article

http://dx.doi.org/10.1126/science.aal1962

Share12Tweet7Share2ShareShareShare1

Related Posts

KIF13B Protein Regulates Liver Metabolism, Combats Fatty Liver

September 3, 2025

Tech-Enhanced Nursing Strategies Boost TB Medication Adherence

September 3, 2025

Dad’s Childhood Exposure to Passive Smoking May Impact Kids’ Lung Health for Life

September 3, 2025

Diabetes Therapy Quality of Life Tied to Mortality

September 3, 2025
Please login to join discussion

POPULAR NEWS

  • Needlestick Injury Rates in Nurses and Students in Pakistan

    296 shares
    Share 118 Tweet 74
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

KIF13B Protein Regulates Liver Metabolism, Combats Fatty Liver

Transforming Date Palm Waste into Probiotic Yogurt Enhancements

Tech-Enhanced Nursing Strategies Boost TB Medication Adherence

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.