• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New 3D-printed technology lowers cost of common medical test

Bioengineer by Bioengineer
May 22, 2019
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Sean Flynn/UConn

A desire for a simpler, cheaper way to do common laboratory tests for medical diagnoses and to avoid “washing the dishes” led University of Connecticut researchers to develop a new technology that reduces cost and time.

Their pipette-based technology could also help make certain medical testing available in rural or remote areas where traditional methods might otherwise be prohibitively expensive and complicated to conduct.

The 3D-printed pipette-tip test developed by the researchers leverages what “has long been the gold standard for measuring proteins, pathogens, antibodies and other biomolecules in complex matrices,” they say. The method still employs the enzyme-linked immunosorbent assay, also known as ELISA, but through a different route. They detailed their findings in a paper recently published online in Analytical Chemistry.

For 30 years or more, ELISA has been used to test blood, cells and other biological samples for everything from certain cancers to HIV, from Lyme disease to pernicious anemia.

Traditional ELISA tests are performed on plates featuring 96 micro-wells; each well works as a separate testing chamber where samples can be combined with various agents that will then react with the sample, typically by changing color. Technicians can then analyze whether a sample contains indicators of a particular disease or condition depending on the intensity of the color produced during the reaction.

While effective and accurate, the equipment used to run ELISA is expensive – often costing thousands of dollars to install in a lab – and requires specialized training to conduct testing, as improper techniques can lead to incorrect results. The agents used in the actual tests – usually various forms of antibodies – can be expensive as well.

Like many research laboratories, James Rusling’s chemistry lab where research assistant Mohamed Sharafeldin and his primary collaborator, Karteek Kadimisetty ’18 Ph.D., conducted their work, doesn’t have an automated ELISA washing machine, meaning that plates being used for tests must be manually washed – a time consuming and difficult process.

“The ELISA washing techniques take forever,” said Sharafeldin, who is currently working toward his doctorate in chemistry. “It’s very tough, especially in a lab like ours. We don’t have those kind of fancy washing machines.”

When Kadimisetty was running ELISA one day, he mentioned, “I wish doing ELISA was as simple as pipetting.” That offhand comment was the impetus for what followed: a design for a 3D-printed adapter for commonly used pipettes that could run an ELISA test right in the pipette tip, without the need for a traditional ELISA plate and the expensive equipment that goes with it.

Each single-use pipette tip represents one micro-well on an ELISA plate; the researchers also designed a multi-tipped version that allows for eight tips to be pipetted at the same time. The tips fit snugly onto most pipettes used in laboratory settings, making fluid handling much easier than with the standard ELISA plate.

“We didn’t want to make a big change in the traditional ELISA; we just made engineered, controlled changes,” Sharafeldin said. “So, the basics are the same. We use the same antibodies at the same concentrations that they use with conventional or traditional ELISA, so we are using the same protocols. Anything that can be run by normal ELISA can be run by this, with the advantage of being less expensive, much faster and accessible.”

The researchers tested the pipette tips on samples from prostate cancer patients and found not only were the test results from the tips as accurate as ELISA tests, they were able to conduct the tests with one-tenth of the amount of testing agent – significantly reducing the overall cost of the test – and at a fraction of the time. Tests conducted by different users with different levels of skill ultimately demonstrated the same results.

Traditional ELISA plate micro-wells hold 400 microliters of fluids each, but the reactions needed to measure test results only occur on the plastic walls of the well. While the 3D-printed ELISA tips hold only 50 microliters, the design of the reservoir inside the tip dramatically increases the surface area where reactions occur, allowing the researchers to use much less of the costly antibodies used to conduct the test, and significantly reducing the time needed to process the test and read the results.

“Here we have a chamber where the reaction happens at all points,” Sharafeldin said, referring to the pipette tip design. “This reduces the time of the assay, which is an important thing, because the ELISA assay takes from five to eight hours to run. This one can be run in 90 minutes.”

The pipette tips also don’t require an expensive or sophisticated plate reader to determine test results, as ELISA tests do. In the trials with the prostate cancer samples, the pipette tip results were accurately read by taking a cell phone photo and using a free app that measures color intensities in the image.

The benefit, Sharafeldin said, is that the user conducting the test with the pipette tips doesn’t have to be a scientist; they just need simple pipetting instructions, then to take a photograph and send it to a technician who could remotely read the results to help make a diagnosis – potentially providing new, lower-cost testing options in rural or isolated areas where establishing a traditional ELISA lab would prove challenging and expensive.

While additional sample testing is needed, Sharafeldin is optimistic about the future potential for the pipette tip design to reduce costs. He is also engaging with engineers to design an automated, vacuum-assisted pipette that would further ease the use of the pipette tips and the conducting of ELISA tests, and would be available for significantly less cost than traditional ELISA equipment.

###

In addition to Sharafeldin, Kadimisetty and Rusling, collaborators include Ketki R. Bhalerao, Itti Bist, Abby Jones, Tianqi Chen; and Norman H. Lee, professor of pharmacology and physiology at George Washington University.

The project was supported by a UConn Academic Plan Grant and partially supported by Grant No. EB016707 from the National Institute of Biomedical Imaging and Bioengineering (NIBIB), NIH.

Media Contact
Jaclyn Severance
[email protected]

Original Source

https://today.uconn.edu/2019/05/new-3d-printed-technology-lowers-cost-decades-old-medical-testing/

Related Journal Article

http://dx.doi.org/10.1021/acs.analchem.9b01284

Tags: BiochemistryBiomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesDiagnosticsHealth Care
Share12Tweet8Share2ShareShareShare2

Related Posts

Entangled Heavy Fermions: Pioneering the Next Frontier in Quantum Computing

Entangled Heavy Fermions: Pioneering the Next Frontier in Quantum Computing

August 5, 2025
blank

Hundreds of Satellite Systems Discovered Orbiting Dwarf Galaxies in New Survey

August 5, 2025

Harnessing Nature: Exploring Bush Basil Companion Plants for Organic Pest Control

August 5, 2025

Diastereodivergent Routes to Multi-Substituted Cycloalkanes

August 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    72 shares
    Share 29 Tweet 18
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Lipidomics, AI Unveil Acute Heart Disease Stages

Unraveling Antifungal Resistance in Candida tropicalis

Loneliness and Smoking Linked in Youth: Longitudinal Study

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.