• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

Neutrons identify critical details in bacterial enzyme implicated in…

Bioengineer.org by Bioengineer.org
January 28, 2018
in Headlines, Health, Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: ORNL

Neutron analysis at the Department of Energy's Oak Ridge National Laboratory is helping researchers better understand a key enzyme found in a bacterium known to cause stomach cancer.

Understanding the details of this enzyme, and thus the Helicobacter pylori bacteria's metabolism and biological pathways, could be central to developing drugs that act against H. pylori, but that do not attack the stomach's useful bacteria.

"Most drugs, including common antibiotics, use a generalized mechanism to bind to their targets, which, in turn, eliminates the good bacteria you need to stay healthy, as well as the bad bacteria," said Andrey Kovalevsky, one of the instrument scientists at the ORNL High Flux Isotope Reactor and coauthor of this research published in the Proceedings of the National Academy of Sciences.

"By understanding how this enzyme functions, we can get clues about how to fine-tune a drug to recognize only a specific target, which would eliminate some of the side effects that cause so many problems for people when a more generalized approach to kill bacteria is used."

Kovalevsky was part of a team led by Donald Ronning at the University of Toledo who used HFIR's IMAGINE instrument to study the metabolism of a bacterial enzyme known as H. pylori 5'-methylthioadenosine nucleosidase, or HpMTAN, which plays a key function in H. pylori. This bacterium garnered international attention in 2005 when a team of researchers was awarded the Nobel Prize in Medicine for determining its role as a "bacterial culprit" in the development of gastric conditions, including ulcers, chronic gastritis and cancer.

Ronning's team focused on H. pylori's use of a unique biosynthetic pathway to synthesize vitamin K2, which aids in the electron transfer processes, or chemical reactions, of all organisms. HpMTAN is one specific enzyme that functionbs within this unique pathway and provides the promising specific target or point of attack for new medications. Vitamin K2 acts to expedite the HpMTAN enzyme's interaction with other macromolecules, including the very bacterium that causes an array of gastric health issues.

Neutron crystallography at HFIR's IMAGINE instrument allowed researchers to accurately visualize the positions and predict the movements of hydrogen atoms in HpMTAN, especially those involved in the critical stages when the enzyme binds to its substrate and then proceeds with the catalytic reaction.

For a comprehensive view on the interatomic interactions, Ronning's team examined four different HpMTAN neutron structures to observe how ligands, or molecules that bind via noncovalent bonding, interacted with their respective enzyme sites.

"This knowledge will inform future drug design efforts by taking advantage of the known orientation of the nucleophilic water molecule and its intimate interactions with the neighboring components of the enzyme," Ronning said.

While Ronning qualified that the development of a new drug to treat gastric issues will take several years and continued study of the enzyme's behavior, he said that his team's research confirms HpMTAN's potential for use and this knowledge could, in fact, speed up the creation of such a medicine.

###

This research was partially funded through the National Institute of Health's National Institute of Allergy and Infectious Disease and a cooperative agreement with the National Aeronautics and Space Administration's Center for the Advancement of Science in Space. The work was conducted in part at the Heinz Maier-Leibnitz Research Neutron Source with the Technical University of Munich, both in Munich, Germany, and at ORNL's High Flux Isotope Reactor, a DOE Office of Science User Facility.

UT-Battelle manages ORNL for the DOE's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/.

Media Contact

Katie Bethea
[email protected]
865-576-8039
@ORNL

http://www.ornl.gov

Share14Tweet7Share2ShareShareShare1

Related Posts

Impact of Sodium-Glucose Cotransporter 2 Inhibitors Varies by Diabetes Status and Albuminuria Levels

November 7, 2025

Charting Parkinson’s Disease Therapeutics Development Pathway

November 7, 2025

Developing Robust Supply Strategies for Graphite: Insights from Rice University Experts on This Essential Mineral for Energy Storage

November 7, 2025

Rising Mortality Among Black Adults Limits Access to Medicare Benefits

November 7, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    314 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1302 shares
    Share 520 Tweet 325
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Sodium-Glucose Cotransporter 2 Inhibitors Varies by Diabetes Status and Albuminuria Levels

Charting Parkinson’s Disease Therapeutics Development Pathway

Developing Robust Supply Strategies for Graphite: Insights from Rice University Experts on This Essential Mineral for Energy Storage

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.