• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Neuroscientists map brain’s response to cold touch

Bioengineer by Bioengineer
June 18, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Carnegie Mellon University neuroscientists have mapped the feeling of cool touch to the brain's insula in a mouse model. The findings, published in the June 15 issue of Journal of Comparative Neurology, provide an experimental model that will advance research into conditions like pain and hypersensitivity to cold and help researchers to continue to unravel the multifaceted ways touch is represented in the brain.

"Touch is, by nature, multi-modal. When you pick something up, it can be warm, smooth and heavy all at once. Your brain divides that touch into all of these different percepts. Understanding how it does this can show us how the brain adapts and learns in response to touch and how changes in these pathways can cause pain and disease," said Alison Barth, professor of biological sciences in the Mellon College of Science and member of the joint Carnegie Mellon/University of Pittsburgh Center for the Basis of Neural Cognition.

Touch is a complex sense made up of different components like temperature, texture, weight and pressure — for example, the smooth and heavy feel of a cold can of soda. Each of these tactile components can be represented in different parts of the brain, and parallel signals from the soda can will activate neurons in multiple areas of the brain, making it difficult to understand how any one of them is represented. Thermal sensation is particularly important, as these neural pathways are thought to overlap with pain, and chronic pain disorders often are associated with abnormal temperature sensitivity.

Although brain maps for touch sensation have been identified in humans, it has been an open question whether other animals share the same organization, a critical question that would enable new therapies to be developed and tested in animal models of disease. For example, reactions to pain and cold temperatures are seen in the insula in the human cerebral cortex. Researchers believed that the rodent insula was far less complex, and reactions to these stimuli wouldn't be observed in the same place as those found in the human brain.

In the current experiment, the Carnegie Mellon researchers looked to establish what part of the mouse brain responded to cool touch. Cold is unique in that only one receptor, TrpM8, responds to cool thermal sensation. Using both cool touch and also exposure to menthol, the researchers were able to show that the feeling of cold was represented in the rodent insula in striking correspondence with the area of the brain activated in humans. Critically, this region was not activated in mice lacking the TrpM8 receptor, indicating that it was highly specific to cool exposure.

The researchers also found that they could trigger the TrpM8 receptors using inhaled menthol and see the same activation in the insula, providing an even more robust way to study this component of touch.

###

Co-authors of the study include Patrick Beukema, Katherine L. Cecil, Elena Peterson, Victor R. Mann, Megumi Matsushita, Yoshio Takashima and Saket Navlakha.

The research was funded by the National Institutes of Health (NS086117).

Media Contact

Jocelyn Duffy
[email protected]
412-268-9982
@CMUScience

http://www.cmu.edu

https://www.cmu.edu/mcs/news-events/2018/0613-Cool-Touch-Neuron.html

Related Journal Article

http://dx.doi.org/10.1002/cne.24418

Share12Tweet7Share2ShareShareShare1

Related Posts

Hope for Sahara Killifish’s Rediscovery in Algeria!

Hope for Sahara Killifish’s Rediscovery in Algeria!

September 12, 2025
Dihuang Yinzi Boosts Cognition, Fights Ferroptosis in Mice

Dihuang Yinzi Boosts Cognition, Fights Ferroptosis in Mice

September 12, 2025

Non-GMO Yeast Boosts Glutathione via Acrolein Resistance

September 12, 2025

Microemulsions Enhance Resistance in Mycoplasma gallisepticum

September 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Overcoming Challenges in Treating Severe Eating Disorders

Necroptosis Creates Soluble Tissue Factor Driving Thrombosis

Terabase-Scale Long-Reads Reveal Soil Bioactive Molecules

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.