• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Neuroscientists explore the risky business of self-preservation

Bioengineer by Bioengineer
September 7, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A critical survival decision for all animals is when, where and how to escape from a looming threat. A Northwestern University research team using multi-neuron imaging has learned that the escape response for prey is more nuanced than previously thought.

In a study of larval zebrafish, the researchers are the first to find that the animal's innate escape response incorporates the speed of the approaching predator — the urgency of the threat — and not just the proximity of the predator in its calculation of how best to flee.

Prior to the new research, the escape behavior was thought to be driven by a proximity threshold where anything that gets within a certain distance triggers an escape. The Northwestern team, however, found that at slower approach rates by a predator, the larval zebrafish's fastest escape circuit is not deployed; instead, a different circuit produces a more delayed and variable escape behavior.

By attributing prey's neural escape response to the predator's velocity as well as proximity of approach, the research team has uncovered new information that can help scientists understand the neural mechanics that fuel the most elemental self-preservation instincts.

The results will be published online Sept. 7 by the journal Current Biology. The study will appear in the Sept. 25 print issue.

"A potential problem with basing the prey's escape decision solely on the predator's proximity is that it does not distinguish between predators approaching rapidly and those approaching slowly," said Malcolm A. MacIver, one of the study's authors. "Our work contributes to understanding a fundamental tradeoff within neural systems: whether to rapidly initiate a canned, inflexible behavior that is more predictable or delay response to compute a more variable behavior that will be harder to predict."

MacIver is professor of biomedical engineering and of mechanical engineering in the McCormick School of Engineering.

To study the neural underpinnings of the escape response, MacIver, professor David L. McLean and biomedical engineering doctoral candidate Kiran Bhattacharyya (first author) chose the larval zebrafish. This animal is transparent, allowing the researchers to image whole groups of neurons and observe the animal's movement at the same time.

"We can watch the brain light up with activity as the animal behaves," said McLean, an associate professor of neurobiology in the Weinberg College of Arts and Sciences and study author. "Studying a model organism such as the zebrafish helps us understand how the brain generates a diversity of behaviors. Gauging an appropriate response to stimuli is a fundamental job of the brain in all animals, including humans, and it is something we want to understand."

McLean and MacIver, whose technical expertise is complementary, have been collaborating for nearly a decade on neuroscience research.

"It seems that the animal is assessing risk, and if the approaching predator's velocity passes a certain level, then the prey gets out of Dodge as fast as it can," MacIver said. "If a predator is coming more slowly, the prey has more options and more time to decide between the options."

Using multi-neuron imaging while simultaneously recording high-speed video of the escape behavior, the researchers have shown that the rate of approach of a threat sets the probability that a special high-speed escape mechanism is deployed (fired by special neurons called Mauthner cells). As the predator's approach rate increases, so too does the probability of deploying this special escape mechanism.

The advantage of the special escape mechanism is that responses occur as fast as possible, but a disadvantage is that the movement is highly predictable, which allows certain predators to "hack" the circuit and trick prey into launching themselves straight into the predator's mouth. At lower approach rates, the special escape circuit is not deployed (Mauthner cells do not fire), and a more variable, although delayed, escape behavior ensues.

"Our findings suggest these simple fish are calibrating their response to the perceived risk of the threat," McLean said. "Our own brain evolved from fish to weigh numerous variables before we act. Now that we know what fish are paying attention to, we can begin to explore the neural computations that govern this fundamental process."

While the special high-speed escape circuit that fish and amphibians deploy for urgent threats disappears in fully terrestrial animals like reptiles, birds and mammals, the alternative high-variability circuit is preserved, MacIver said. As animals emerged from the water and started inhabiting land, their visual range increased dramatically, allowing the expression of more variable behaviors using this alternate circuitry.

###

The paper is titled "Visual threat assessment and reticulospinal encoding of calibrated responses in larval zebrafish."

Media Contact

Megan Fellman
[email protected]
847-491-3115
@northwesternu

http://www.northwestern.edu

Share12Tweet8Share2ShareShareShare2

Related Posts

Bacterial Resistance to Heavy Metals and Chromium Reduction

Bacterial Resistance to Heavy Metals and Chromium Reduction

September 18, 2025
Could Enhancing This Molecule Halt the Progression of Pancreatic Cancer?

Could Enhancing This Molecule Halt the Progression of Pancreatic Cancer?

September 17, 2025

3D Jaw Analysis Uncovers Omnivorous Diet of Early Bears

September 17, 2025

Wild Chimpanzees Consume the Equivalent of Several Alcoholic Drinks Daily, Study Finds

September 17, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Graz University of Technology Pioneers Lung Cancer Research Using Digital Cell Twin Technology

Discovering a Vital Link Between Iron Metabolism and Melanoma Plasticity

Measuring Maternal-Fetal Fentanyl Transfer During Epidurals

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.