• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Neuroprotective mechanisms of gene and cell therapy of spinal cord injuries

Bioengineer by Bioengineer
March 6, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A joint paper with Kazan State Medical University appeared in Stem Cells International.

The research was based at the Gene and Cell Technologies Lab of Kazan University.

Previously, KFU employees suggested using gene and cell therapy to treat spinal injuries. To that end, therapeutic genes were transported to an affected spinal cord area by mononuclear cells of umbilical cord blood. Group Head Yana Mukhamedshina explains that the approach is based on genetic modification of umbilical cord blood cells aimed at increasing their regenerative potential. "In particular, VEGF and GDNF genes, which possess strong neuroprotective and neurotrophic properties, were used. These genes, or, more precisely, the proteins coded by them, can protect neurons and have a supportive influence on them. Thus, umbilical cord blood cells serve as transporters of therapeutic genes and a sort of mini bio plants of recombinant biologically active proteins in injured areas," she explains. As a result, experiments showed that motor functions and structure of damaged tissues of the spinal cord improved. (Mukhamedshina et al., Assessment of Glial Scar, Tissue Sparing, Behavioral Recovery and Axonal Regeneration following Acute Transplantation of Genetically Modified Human Umbilical Cord Blood Cells in a Rat Model of Spinal Cord Contusion. PlosOne. 2016).

In this new publication, the team continued researching fundamental mechanisms of such neuroprotective properties. As the authors posited, spinal cord injuries unavoidably results in death of not only neurons but also glial cells. In particular, the death of oligodendrocytes leads to impaired nerve impulse conduction in intact axons. Fibrous tissue grows in the place of destroyed myelin and thus leads to paralysis and paresis. However, Schwann cells can migrate to the injured area and participate in myelin production, thus replacing the functions of oligodendrocytes.

The results may serve as the basis for gene and cell medications applicable to not only spinal cord injuries but also other demyelinating diseases, such as multiple sclerosis.

###

Media Contact

Yana Mukhamedshina
[email protected]
@KazanUni

http://kpfu.ru/eng

https://kpfu.ru/eng/news-eng/neuroprotective-mechanisms-of-gene-and-cell-332474.html

Related Journal Article

http://dx.doi.org/10.1155/2018/4695275

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

αCGRP Deficiency Worsens Lung Fibrosis via Cell Aging

October 4, 2025

Key Skills for New ICU Nurses in Iran

October 4, 2025

Acylation Shapes Immunotherapy Success in Liver Cancer

October 4, 2025

Herbal Remedies: Effectiveness for Type 2 Diabetes Control

October 4, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    93 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    89 shares
    Share 36 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    69 shares
    Share 28 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Inflammatory Markers Shape EGFR-Mutant Lung Cancer

Radiomic Changes in Femur During Helical Tomotherapy

Building Larger Hydrocarbons for Optical Cycling

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.