• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Neurons reliably respond to straight lines

Bioengineer by Bioengineer
October 23, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Carnegie Mellon University

Single neurons in the brain's primary visual cortex can reliably detect straight lines, even though the cellular makeup of the neurons is constantly changing, according to a new study by Carnegie Mellon University neuroscientists, led by Associate Professor of Biological Sciences Sandra Kuhlman. The study's findings, published in Scientific Reports on Oct. 16, lay the groundwork for future studies into how the sensory system reacts and adapts to changes.

Most of us assume that when we see something regularly, like our house or the building where we work, our brain is responding in a reliable way with the same neurons firing. It would make sense to assume that the same would hold true when we see simple horizontal or vertical lines.

"The building our lab is in has these great stately columns," said Kuhlman. "The logical assumption is that as we approach the building each day our brains are recognizing the columns, which are essentially straight lines, in the same way. Scientifically, we had no idea if this was true."

While Kuhlman and other scientists believed that this idea of neuronal reliability is a likely hypothesis, they also had reason to believe it might not be the case. The protein components that constitute the cellular makeup of individual neurons continually change over the course of hours or days, which might alter when they respond to a given stimulus. Neither hypothesis had been proven experimentally.

In the case of vision, researchers did know that when we first encounter a stimulus, a group of neurons in the brain's primary visual cortex respond to the stimulus' orientation, determining if the stimulus is horizontal, vertical or tilted at an angle. The neurons pass this information deeper into the brain's visual cortex to the next stage of processing. But they didn't know which neurons were responding and if the same ones responded each time.

A new imaging technology called two-photon microscopy allowed neuroscientists in Kuhlman's lab to visualize between 400-600 neurons at once in the primary visual cortex of a mouse model that expresses a fluorescent protein when a neuron is activated. In the experiment, the mouse was shown a sequence pattern of differentially oriented lines — some horizontal, some vertical, and others at angles. These stimuli activated excitatory neurons and caused them to emit a fluorescent signal, which could be seen using the microscope technique.

Over a two-week period, the mice were exposed to the same visual stimuli and researchers measured the response profile of each of the hundreds of neurons. They found that, throughout the study, about 80 percent of the tracked neurons were reliably activated by the same oriented lines. They also reliably remained silent to the same oriented lines. This indicated that they maintained the same functional role within the brain circuit for days.

The researchers were able to test an extensive range of stimuli, including measuring how the neurons responded to lines of varying thickness. They found that some neurons were unstable in how they responded to thickness, while maintaining their original selectivity to line orientation. Kuhlman noted that this indicated that individual neurons can continually encode particular visual features while still being able to adapt to others.

"It was interesting to see plasticity in one feature, but not another," said Kuhlman. "This gives us a key insight into how our brains may maintain a stable perception of the world while incorporating new information. For example, you want to be able to recognize your building even if slight updates are made, such as if the columns of your building are cleaned. It appears that we can update one aspect of a stimulus feature without completely altering the functional response property of a given neuron."

The researchers will use this dataset as a control for their next set of studies that aim to see how these neurons respond when there are changes in the visual system, such as while learning a new visual task or following recovery from ocular occlusion.

###

Additional study authors include: Brian B. Jeon and Steven M. Chase from the CMU Department of Biomedical Engineering and joint Pitt/CMU Center for the Neural Basis of Cognition; Jeffery T. Good from the CMU Department of Biological Sciences; and Alex D. Swain from the University of Pittsburgh Integrative Systems Biology Program.

The study was funded by the National Institutes of Health (EY024678).

Media Contact

Jocelyn Duffy
[email protected]
412-268-9982
@CMUScience

http://www.cmu.edu

Original Source

https://www.cmu.edu/mcs/news-events/2018/1023_Kuhlman-Scientific-Reports.html http://dx.doi.org/10.1038/s41598-018-33633-2

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

PhET Interactive Simulations Honored with Meggers Project Award

October 30, 2025
How Protein Binding to Fraying DNA Unlocks the Mystery Behind a Global Illness

How Protein Binding to Fraying DNA Unlocks the Mystery Behind a Global Illness

October 30, 2025

UC Riverside Scientist Honored by American Federation for Aging Research

October 30, 2025

New Study Explores Crucial Hormone in Fertility Preservation for Women with Cancer

October 30, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1292 shares
    Share 516 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    202 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

PhET Interactive Simulations Honored with Meggers Project Award

Survival Insights for 2021 WHO Glioma Patients

PFAS Levels Linked in Water and Southern California Adults

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.