• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Neurons modulate the growth of blood vessels

Bioengineer by Bioengineer
January 10, 2017
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Bild: le Noble/KIT

A team of researchers at Karlsruhe Institute of Technology (KIT) shake at the foundations of a dogma of cell biology. By detailed series of experiments, they proved that blood vessel growth is modulated by neurons and not, as assumed so far, through a control mechanism of the vessel cells among each other. The results are groundbreaking for research into and treatment of vascular diseases, tumors, and neurodegenerative diseases. The study will be published in the prestigious journal Nature Communications.

"Our work is pure basic research," Professor Ferdinand le Noble of KIT's Zoological Institute says, "but provides a completely new perspective on how blood vessels grow, branch out, or are inhibited in their growth." For decades, researchers have been looking for ways to promote or impede the formation of new blood vessels. Whereas heart attack and stroke patients would profit from new arteries, cancer patients would benefit from tumor starving by putting a stop to ingrowing blood vessels.

The key figures in the newly discovered extremely finely balanced process are signaling molecules: the brake on growth "soluble FMS-like tyrosine kinase-1", referred to as 1sFlt1, and the "vascular endothelial growth factor", referred to as VEGF. Even though, so far, it has been largely unknown how VEGF is regulated by the body, inhibition of this growth factor has been applied for years already in the treatment of cancer patients and of certain eye diseases. The therapy, however, is successful only in part of the patients and has several undesired side effects.

"So far, research assumed the blood vessels to more or less regulate their own growth," explains le Noble. "In case of oxygen deficiency," he points out, "tissue, among others, releases the growth factor VEGF, thus attracting the blood vessels carrying VEGF receptors on their surfaces. We wanted to know how this blood vessel growth is regulated at the time of a creature's birth." The team around le Noble hence studied the continuous growth of nerve tracts and circulatory vessels in zebrafish model organisms. The eggs of zebrafish are transparent and develop outside of the mother's body, allowing researchers to watch and observe the development of organs or even individual cells without injuring the growing animal.

By means of fluorescent dyes, postgraduate Raphael Wild in a first step documented colonization of neuronal stem cells and subsequent vascular budding in the vertebral canal of zebrafish. To understand the exact process, the team started a detailed biochemical and genetic analysis.

The researchers proved that at different development stages, the nerve cells of the spinal cord produce more or less sFlt1 and VEGF and, in this way, modulate the development of blood vessels. At the early development stage, neuronal sFlt1 brakes blood vessel growth by binding and inactivating the growth factor VEGF. In the spinal cord, this creates an environment poor in oxygen, which is essential to the early development of the neuronal stem cells. With increasing nerve cell differentiation, concentration of the soluble sFlt1 decreases continuously, and the brake on vascular growth is loosened because more active VEGF is now available. Subsequently, blood vessels grow into the young spinal cord to provide it with oxygen and nutrients.

In addition, Raphael Wild and his colleague Alina Klems show that the concentration of the growth factor is crucial as regards the density of the developing blood vessel network. Whereas, when the "brake" sFlt1 in nerve cells was switched off completely, a dense network of blood vessels formed which even grew into the vertebral canal, the growth of blood vessels was suppressed when sFIt1 was increased. Even small variations in substance concentration thus led to severe vascular developmental disorders.

Since vascular cells also have own forms of sFlt1 and VEGF, the question arose as to whether blood vessel growth may, to a certain degree, regulate itself. To find out, the researchers applied the still young and extremely elegant CRISPR/Cas method: Whereas there was no effect when sFlt1 was switched off only in vascular cells, an intensive growth of blood vessels was observed when the production of sFlt1 was switched off in the nerve cells only.

"From the results we conclude that by a fine modulation of sFlt1 and VEGF, nerve cells very dynamically regulate the density of their blood vessel network according to requirements or according to the respective development stage," le Noble points out. "The previous assumption that growing blood vessel cells control the succeeding vascular cells is a cell biology dogma whose foundations are being shaken."

###

Original publication:

Neuronal sFlt1 and Vegfaa determine venous sprouting and spinal 1 cord vascularization. Raphael Wild, Alina Klems, Masanari Takamiya, Yuya Hayashi, Uwe Strähle, Koji Ando, Naoki Mochizuki, Andreas van Impel, Stefan Schulte-Merker, Janna Krueger, Laetitia Preau, Ferdinand le Noble. Nature Communications, Vol. XY, Pages XYZY, (2016).

Karlsruhe Institute of Technology (KIT) pools its three core tasks of research, higher education, and innovation in a mission. With about 9,300 employees and 25,000 students, KIT is one of the big institutions of research and higher education in natural sciences and engineering in Europe.

KIT – The Research University in the Helmholtz Association

Since 2010, the KIT has been certified as a family-friendly university.

The photo of printing quality may be downloaded under http://www.kit.edu

Media Contact

Monika Landgraf
[email protected]
49-721-608-47414
@KITKarlsruhe

http://www.kit.edu/index.php

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Boosting Xanthan Gum Production with Essential Oil By-products

Boosting Xanthan Gum Production with Essential Oil By-products

September 13, 2025
Groundwater Pesticide Contamination: Challenges and Solutions

Groundwater Pesticide Contamination: Challenges and Solutions

September 13, 2025

FBXW11 Ubiquitinates YB1, Suppressing Hepatocarcinoma Growth

September 13, 2025

Interpretable Deep Learning for Anticancer Peptide Prediction

September 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Xanthan Gum Production with Essential Oil By-products

Groundwater Pesticide Contamination: Challenges and Solutions

FBXW11 Ubiquitinates YB1, Suppressing Hepatocarcinoma Growth

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.