• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, July 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Neural networks predict planet mass

Bioengineer by Bioengineer
March 13, 2019
in Science
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: © University of Bern / Image: Adrian Moser

Planets grow in stellar disks accreting solid material and gas. Whether they become bodies like Earth or Jupiter depends on different factors like the properties of the solids, the pressure and temperature in the disk and the already accumulated material. With computer models the astrophysicists try to simulate the growth process and determine the interior planetary structure. For given boundary conditions they calculate the masses of the gas envelope of a planet. “This requires solving a set of differential equations”, explains Yann Alibert, science officer of the NCCR PlanetS at the University of Bern: “Solving these equations has been a specialty of the astrophysicists here in Bern for the past 15 years, but it is a complicated and time consuming process.”

To speed up the calculations Yann Alibert and PlanetS associate Julia Venturini of the International Space Science Institute (ISSI) in Bern adopted a method that has already captured many other fields including the smartphone in our hand: deep learning. It is for instance used for face and image recognition. But this branch of artificial intelligence and machine learning has also improved automatic language translation and will be crucial for self-driving cars. “There is a big hype also in astronomy,” says Alibert: “Machine learning has already been used to analyze observations, but to my knowledge we are the first to use deep learning for such a purpose.” Alibert and Venturini publish their results in the journal Astronomy and Astrophysics (A&A).

Database of millions of planets

First, the researchers had to create a database. They calculated millions of possible interior structures of planets. “It took us three weeks to compute all these test cases using a code developed by Julia Venturini during her PhD in Bern,” says Alibert. The next step was to decide the architecture of an artificial neural network, a set of algorithms that passes input data through mathematical operations and has the ability to learn without being explicitly programmed. “Then, we trained this network using our gigantic database,” explains the astrophysicist: “Now our network is able to predict the mass of a planet being formed under certain conditions with a very good accuracy and tremendously faster than solving the differential equations.”

The deep learning process is much more precise than previously developed methods to replace the solution of differential equations by some analytical formulas. These analytical formulas could predict that a planet should grow up to the mass of Jupiter, while in reality it could not have more mass than Neptune. “We show that our deep neural networks provide a very good approximation at the level of percents,” summarizes Alibert. The researchers provide their results on the software development platform GitHub, so that colleagues working in planet formation all around the world benefit from them.

###

Media Contact
Yann Alibert
[email protected]

Original Source

https://www.unibe.ch/news/media_news/media_relations_e/media_releases/2019/medienmitteilungen_2019/neural_networks_predict_planet_mass/index_eng.html

Tags: Software EngineeringSpace/Planetary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    73 shares
    Share 29 Tweet 18
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14
  • IIT Researchers Unveil Flying Humanoid Robot: A Breakthrough in Robotics

    53 shares
    Share 21 Tweet 13
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.