• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Nerve cells in the human brain can ‘count’

Bioengineer by Bioengineer
September 20, 2018
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: © Photo: Rolf Müller/UKB-Ukom

How do we know if we're looking at three apples or four? Researchers at the Universities of Bonn and Tübingen are now one step closer to answering this question. They were able to demonstrate that some brain cells fire mainly for quantities of three, others for quantities of four and others for other quantities. A similar effect can be observed for digits: In humans, the neurons activated in response to a "2" are for instance not the same as the neurons activated for a "5". The results also demonstrate how we learn to handle number symbols in comparison to quantities. The study is published online in the journal Neuron.

We are born with the ability to count: Shortly after birth, babies can estimate the number of events and even perform simple calculations. But what exactly happens in the brain? And do we process abstract numbers differently from concrete quantities? Researchers from the Department of Epileptology at the University of Bonn and neurobiologists from the University of Tübingen have investigated these two questions. They benefited from a special feature of Bonn University Hospital: The epileptology clinic located there specializes in brain surgery. With this, doctors try to cure epilepsy patients by means of an operation in which they remove the diseased nerve tissue. In some cases, they first have to insert electrodes into the affected person's brain in order to ascertain the location of the epileptogenic focus. As a side effect, researchers can use this to watch patients think.

Algorithm recognizes how many points test subjects see

This is also the case in the current study: The nine participants were epilepsy patients who had microelectrodes as fine as a single hair inserted into their temporal lobes. "This enabled us to measure the reaction of individual nerve cells to visual stimuli," explains Prof. Dr. Dr. Florian Mormann, head of the Cognitive and Clinical Neurophysiology group. The scientists now showed their subjects a different number of points on a computer screen – sometimes only one, sometimes four or even five. "We were able to demonstrate that certain nerve cells fired primarily in response to very specific quantities," explains Esther Kutter, lead author of the study. "For example, some were activated mainly by three dots, others by one."

Each quantity therefore creates a specific activity pattern in the human brain. "We have written a classification algorithm that evaluates this pattern," Mormann explains. "This allowed us to use the arousal state of the nerve cells to read how many points our respective subject could see."

The scientists also observed an interesting effect: Although the neurons were "set" to a certain quantity, they also responded to slightly different quantities. A brain cell set to quantities of three also fired in response to two or four points, but then weaker. With one or five points, however, it could hardly be activated. Experts call this the "Numerical Distance Effect". Prof. Dr. Andreas Nieder from the University of Tübingen, co-supervisor of the study, already demonstrated the same phenomenon in experiments on monkeys. "Numbers are processed in our brains in exactly the same way as in the brains of monkeys," he emphasizes. "This confirms monkeys as an indispensable model for research into the processing of quantitative information."

We learn digits differently from characters

How we process digits, i.e. symbols that represent quantities, can hardly be answered with the help of animals. The scientists have now been able to show for the first time that this works in principle in a similar way as with quantities: When we see a certain digit, certain brain cells fire. However, the digit neurons and the quantity neurons are not identical: The digit "3" excites completely different nerve cells than a quantity of three points.

Another observation is even more exciting: "The digit neurons also have a numerical distance effect," says Mormann. "They are also stimulated not only by the exact digit, but also by its neighbors – but only very weakly." Nevertheless, this phenomenon shows that we learn digits differently from simple characters: In a sense, the neurons have learned that the value of a 3 is only slightly different from a 2 or a 4, otherwise they would not also respond to these two digits. Digits therefore seem to be firmly interwoven with a certain idea of quantity.

The researchers hope that their results will also contribute to a better understanding of dyscalculia, a developmental disorder accompanied, among other things, by a poorer understanding of quantity.

###

Publication: Esther F. Kutter, Jan Bostroem, Christian E. Elger, Florian Mormann and Andreas Nieder: Single neurons in the human brain encode numbers; DOI: 10.1016/j.neuron.2018.08.036

Contact:

Prof. Florian Mormann, MD, PhD
Department of Epileptology, University of Bonn
Tel. +49(0)228/28715738
E-mail: [email protected]

Prof. Andreas Nieder, PhD
Institute of Neurobiology, University of Tübingen
Tel. +49(0)7071/2975347
E-mail: [email protected]

Media Contact

Florian Mormann
[email protected]
49-228-287-15738
@unibonn

http://www.uni-bonn.de

Related Journal Article

http://dx.doi.org/10.1016/j.neuron.2018.08.036

Share14Tweet7Share2ShareShareShare1

Related Posts

Advances in Asthma Therapeutics Unveiled

September 19, 2025

Persistent Cough Reveals Mysterious Endobronchial Mass

September 19, 2025

2025 Ig Nobel Prize Awarded for Perfecting the Science of Pasta Sauce

September 19, 2025

Uncovering Cancer Disparities Among Racial Groups

September 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advances in Asthma Therapeutics Unveiled

Persistent Cough Reveals Mysterious Endobronchial Mass

Unlocking Lignocellulose Breakdown: Microbial Enzyme Insights

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.