• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Neonicotinoid causes ASD-like symptoms in chicks

Bioengineer by Bioengineer
November 18, 2022
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Disturbed transmission via nicotinic acetylcholine receptors in chick fetuses impairs the hatchlings’ preference for animate objects—similar to what is seen in autism spectrum disorder in humans.

Biological motion simulation and leghorn chicks

Credit: Toshiya Matsushima

Disturbed transmission via nicotinic acetylcholine receptors in chick fetuses impairs the hatchlings’ preference for animate objects—similar to what is seen in autism spectrum disorder in humans.

Autism spectrum disorder (ASD) refers to a group of disabilities due to atypical brain development. Individuals with ASD have difficulties in social communication and interaction. Diverse causes of ASD are hypothesized, but most of them remain to be understood. A vast research effort has thus been invested to develop appropriate animal models to study the causes.

A team of researchers led by Professor Emeritus Toshiya Matsushima at Hokkaido University found an ASD-like behavioral impairment in chicks, suggesting a molecular pathway of ASD pathogenesis. Their results were published in the online journal Cerebral Cortex Communications.

One of the earliest indications of ASD is a retarded preference for animate objects such as face configuration and biological motion (BM). This preference typically appears in neonates (newborns), but it is hampered in individuals with familial ASD risk. Common mammalian model animals such as rats and mice are not valid for studying this aspect of ASD as they do not spontaneously exhibit BM preference.

The team used chicks as a model to study BM preference. Similar to humans, chicks exhibit a preference for BM very early in life, concomitant with social attachment formation by imprinting. Although birds and mammals diverged some 300 million years ago, some of their visual and motor control systems are conserved despite the evolutionary distance.

The authors initially hypothesized that spontaneous movement of fetuses is critical for the BM preference to develop. To test this, they injected fertilized eggs with ASD-risk chemicals while “listening” to the fetal movements through a record stylus gently placed on the shell surface. After hatching, preference of the chicks was tested in a T-shaped maze.

Chemicals that arrest fetal movements were systematically tested. Ketamine, tubocurarine, methyllycaconitine and imidacloprid (IMI) significantly reduced the BM preference without impairing the imprinting memory formation; these chemicals act on nicotinic acetylcholine receptors (nAChRs). Interestingly, when bumetanide—a drug reported to reduce severity in some ASD cases—was administered to chicks before imprinting, typical BM preference was resumed.

Contrary to the initial hypothesis, however, the arrested fetal movement did not necessarily cause impairment in BM preference. Rather, the results show that transmission via nAChRs per se is critical. If disturbed, the BM preference is lost, and chicks fail to form selective social attachment to biological objects.

Particular concern resides in IMI, one of the most widely used neonicotinoid insecticides. As it impaired the BM at concentrations as low as 1 ppm, environmental neonicotinoids could cause a similar retardation on human neonates if they are exposed during pregnancy, according to the study.

This study established advantages of using chicks as an ASD model. The primary advantage is the phenotype similarity between chicks and humans. Furthermore, the oviparous nature of chickens allows for precise and speedy screening of risk chemicals. But does the chick story really tell us about human ASD? The affected brain region must be clarified in terms of evolutionary neurobiology to reveal genuine similarities between birds and humans.



Journal

Cerebral Cortex Communications

DOI

10.1093/texcom/tgac041

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Fetal blockade of nicotinic acetylcholine transmission causes autism-like impairment of biological motion preference in the neonatal chick

Article Publication Date

18-Nov-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Factors Influencing Seizure Control in Pediatric Epilepsy

August 27, 2025

Exploring Depression’s Impact on Blood Sugar Control

August 27, 2025

Polyions and Polyelectrolyte Complexes: Advancements for Brain Therapies

August 27, 2025

SLC4A11: Key Marker for Ovarian Cancer Treatment Response

August 27, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Factors Influencing Seizure Control in Pediatric Epilepsy

High-Performance MoS2/rGO Nanocomposite for Oxygen Evolution

Exploring Depression’s Impact on Blood Sugar Control

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.