• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Nemours, UD technology pushes cancer research forward

Bioengineer by Bioengineer
August 10, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Cindy Brodoway

Wilmington, DE – The field of cancer research is moving rapidly toward three-dimensional (3D) laboratory cultures because 3D models can speed drug discovery and better predict the efficacy of using certain drug therapies. Just 1% of drugs investigated ever make it through the gamut of testing and approval to market. Technology that accommodates better precision in drug discovery and treatment is now being pursued with intensity.

A traditional two-dimensional (2D) culture is a flat monolayer grown in a plastic dish, which, while containing tumor cells, does not necessarily mimic the three-dimensional nature of a tumor. In other words, 2D doesn't reflect the human body. Think of a sheet of tissue versus a ball of tissue. The ball more accurately represents the tumor's composition and in vivo conditions.

One of the problems with applying 3D cell cultures to drug discovery has been the incompatibility of 3D models with high throughput screening (HTS) techniques in place in drug discovery labs. Research in bridging this gap is hot as scientists, engineers and physicians work together to develop ways to connect 3D models and HTS to lead to more meaningful drug discovery.

The advantage of the new process is that it allows greater predictability of the effectiveness and toxicity of certain drug therapies before the drugs move into clinical trials which, in turn, is expected to lower the attrition rate of new medicines under development. Because the 3D models offer a more in vivo-like context, researchers will be able to re-visit drug therapies that may have been ruled out or overlooked in the past using 2D models.

Nemours Biomedical Research and the University of Delaware (UD) Department of Materials Science and Engineering have developed a patent-pending process to make 3D models work in HTS labs, allowing drug discovery to move into more meaningful screening systems. Sigrid Langhans, PhD, of Nemours, along with Darrin Pochan, PhD, of the University of Delaware and colleagues, published an article about their findings this week in Analytical Biochemistry.

Dr. Langhans, Head of the HTS Lab at Nemours, says the new process can mimic the physical properties of tumors and signaling pathways, which vary greatly between 2D and 3D models. Many drugs never make it to market because labs are not using appropriate models. The process is a simple one with broad applicability and no need for additional specialized equipment. Her focus at Nemours is on pediatric brain tumors – specifically medulloblastoma – but she says many labs will be able to duplicate the process to look into other types of pediatric and adult cancers. "The technology is simple and can be tuned and adapted so that it's broadly applicable in other labs," she said.

Glioblastoma, the form of brain cancer that Sen. John McCain has, is aggressive and hard to treat in adults. It is also one of those tumors where 3D culture technologies hold great promise. There is potential, Langhans said, for the Nemours/UD process to further research and treatment if investigators are able to generate more models for glioblastoma and thus speed the discovery of more drug therapy options.

###

Nemours is an internationally recognized children's health system that owns and operates the Alfred I. duPont Hospital for Children in Wilmington, Delaware and the Nemours Children's Hospital in Orlando, Florida, along with pediatric primary and specialty care sites in Delaware, Florida, Pennsylvania, New Jersey and Maryland. Established as The Nemours Foundation through the legacy and philanthropy of Alfred I. duPont, Nemours offers pediatric inpatient and outpatient clinical care, research, education, advocacy and prevention programs to families in the communities it serves. For more information, visit http://www.Nemours.org

Media Contact

Karen Bengston
[email protected]
302-293-4928

http://www.nemours.org

Original Source

http://www.nemours.org/about/mediaroom/press/dv/new-technology-pushes-cancer-research-forward.html

Share12Tweet8Share2ShareShareShare2

Related Posts

Orogeny Fuels Spider Family Diversification in Asia

Orogeny Fuels Spider Family Diversification in Asia

September 28, 2025

Unveiling Cacna1e Splice Variants’ Functional Diversity

September 28, 2025

Key Genes Uncovered for Banana Blood Disease Resistance

September 28, 2025

Streptococcus anginosus Found Across Female Urogenital Sites

September 28, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    85 shares
    Share 34 Tweet 21
  • Physicists Develop Visible Time Crystal for the First Time

    73 shares
    Share 29 Tweet 18
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Addressing Frailty and Polypharmacy in Elderly Home Care

Unplanned, Premature Births Outside Hospital Present Critical Challenges for Emergency Responders

Hypnosis Enhances Comfort of Ventilation Masks for Patients with Respiratory Issues

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.