• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Neglected 80-year-old antibiotic is effective against multi-drug resistant bacteria

Bioengineer by Bioengineer
May 16, 2023
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

An old antibiotic may provide much-needed protection against multi-drug resistant bacterial infections, according to a new study publishing May 16th in the open access journal PLOS Biology by James Kirby of Harvard Medical School, US, and colleagues. The finding may offer a new way to fight difficult-to-treat and potentially lethal infections.

Neglected 80-year-old antibiotic is effective against multi-drug resistant bacteria

Credit: James Kirby (CC-BY 4.0, https://creativecommons.org/licenses/by/4.0/); Zoe L Watson et al., 2023, eLife, CC-BY 4.0 (https://creativecommons.org/licenses/by/4.0/)

An old antibiotic may provide much-needed protection against multi-drug resistant bacterial infections, according to a new study publishing May 16th in the open access journal PLOS Biology by James Kirby of Harvard Medical School, US, and colleagues. The finding may offer a new way to fight difficult-to-treat and potentially lethal infections.

Nourseothricin is a natural product made by a soil fungus, which contains multiple forms of a complex molecule called streptothricin. Its discovery in the 1940s generated high hopes for it as a powerful agent against Gram-negative bacteria, which, due to their thick outer protective layer, are especially hard to kill with other antibiotics. But nourseothricin proved toxic to kidneys, and its development was dropped. However, the rise of antibiotic-resistant bacterial infections has spurred the search for new antibiotics, leading Kirby and colleagues to take another look at nourseothricin.

Early studies of nourseothricin suffered from incomplete purification of the streptothricins. More recent work has shown that the multiple forms have different toxicities with one, streptothricin-F, significantly less toxic, while remaining highly active against contemporary multidrug-resistant pathogens. Here, the authors characterized the antibacterial action, renal toxicity, and mechanism of action of highly purified forms of two different streptothricins, D and F. The D form was more powerful than the F form against drug-resistant Enterobacterales and other bacterial species, but caused renal toxicity at a lower dose. Both were highly selective for Gram-negative bacteria.

Using cryo-electron microscopy, the authors showed that streptothricin-F bound extensively to a subunit of the bacterial ribosome, accounting for the translation errors these antibiotics are known to induce in their target bacteria. Interestingly, the binding interaction is distinct from other known inhibitors of translation, suggesting it may find use when those agents are not effective.

“Based on unique, promising activity,” Kirby said, “we believe the streptothricin scaffold deserves further pre-clinical exploration as a potential therapeutic for the treatment of multidrug-resistant, Gram-negative pathogens.”

Kirby adds, “Isolated in 1942, streptothricin was the first antibiotic discovered with potent gram-negative activity.  We find that not only is it activity potent, but that it is highly active the hardiest contemporary multidrug-resistant pathogens and works by a unique mechanism to inhibition protein synthesis.”

#####

In your coverage, please use this URL to provide access to the freely available paper in PLOS Biology: http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3002091

Citation: Morgan CE, Kang Y-S, Green AB, Smith KP, Dowgiallo MG, Miller BC, et al. (2023) Streptothricin F is a bactericidal antibiotic effective against highly drug-resistant gram-negative bacteria that interacts with the 30S subunit of the 70S ribosome. PLoS Biol 21(5): e3002091. https://doi.org/10.1371/journal.pbio.3002091

Author Countries: United States

Funding: see manuscript



Journal

PLoS Biology

DOI

10.1371/journal.pbio.3002091

Method of Research

Experimental study

Subject of Research

Animals

COI Statement

Competing interests: The authors have declared that no competing interests exist.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Essential Oils Combat Foodborne Bacteria Biofilms

August 28, 2025
blank

Unveiling Plant Decay: Innovative Technique Identifies Hidden Wood and Leaf Decomposers

August 28, 2025

RASEL: Revolutionizing Core SNP Selection in Cattle

August 28, 2025

Decoding and Breeding Polyploid Crop Genomes

August 28, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Reevaluating GFR Levels in Fragility Fracture Patients

Essential Oils Combat Foodborne Bacteria Biofilms

Serum Ferritin Levels in Juvenile Arthritis Subtypes

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.