• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Agriculture

Neanderthals and Mesolithic Hunter-Gatherers Ignited Fires: Humans Molded European Landscapes Well Before Agriculture

Bioengineer by Bioengineer
October 23, 2025
in Agriculture
Reading Time: 4 mins read
0
Neanderthals and Mesolithic Hunter-Gatherers Ignited Fires: Humans Molded European Landscapes Well Before Agriculture
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Imagine a prehistoric Europe where dense forests stretched across vast terrains, populated by colossal herds of megafauna including elephants, bison, and aurochs. Small groups of human ancestors, wielding rudimentary tools and controlling fire, coexisted within these landscapes tens of thousands of years ago. Recent research spearheaded by an international team, including scientists from Aarhus University, revolutionizes our understanding of how these early humans influenced their environment—not as mere bystanders, but as active engineers shaping the continent’s vegetation long before farming emerged.

Employing state-of-the-art computational simulation models, the researchers integrated complex ecological variables such as climate fluctuations, large herbivore populations, natural wildfires, and human activities to unravel the drivers behind vegetation patterns during two pivotal warm periods: the Last Interglacial (approximately 125,000 to 116,000 years ago) and the Early Holocene (12,000 to 8,000 years ago). By juxtaposing simulation outputs with extensive pollen records spanning these epochs, the team deciphered the relative contributions of natural and anthropogenic forces in sculpting Europe’s ancient landscapes.

The analysis reveals that neither climate variability nor the presence of megafauna alone adequately explains the floral compositions observed in fossilized pollen data. Instead, incorporating human influences—specifically Neanderthal fire use and hunting pressure in the Last Interglacial, and Mesolithic hunter-gatherer activity in the Early Holocene—produces simulations that align much more closely with paleoecological evidence. This finding profoundly challenges the long-held assumption that pre-agricultural Europe existed as a pristine wilderness untouched by human hands.

Neanderthals, who roamed Europe during the Last Interglacial, were not passive inhabitants but engaged in fire management and preyed upon gigantic herbivores. Some prey, such as the straight-tusked elephant weighing up to 13 tonnes, illustrate the Neanderthals’ capacity to significantly disturb animal populations. Their hunting led to reduced grazing pressure, indirectly fostering denser vegetation as fewer herbivores consumed young plants and saplings. However, due to relatively low human numbers, this ecological impact remained moderate and did not eradicate the megafauna or their ecological roles.

In contrast, the Early Holocene witnessed Mesolithic hunter-gatherers of Homo sapiens exerting a far more marked influence on plant distribution and landscape openness. Simulation results estimate that humans shaped nearly half—around 47%—of plant community distributions during this period. Their fire regimes, combined with effective hunting strategies, diminished the abundance and diversity of large grazers, promoting shifts in vegetation patterns at a continental scale. This dual mechanism demonstrates early Homo sapiens as pivotal engineers, proactively transforming ecosystems millennia before the advent of agriculture.

Underpinning this breakthrough is an innovative interdisciplinary approach combining ecology, paleoecology, archaeology, and advanced artificial intelligence algorithms. Specialist knowledge of pollen, or palynology, furnished critical empirical benchmarks, while computational models allowed researchers to iterate and optimize scenarios efficiently. This use of AI-driven optimization algorithms in ecological simulation marks a cutting-edge methodological leap, enabling robust inference about prehistoric human-environment interactions that were previously speculative.

The implications of these findings extend beyond ecological history. They demand reconsideration of the “natural” baseline landscapes often cited as reference points in conservation biology and rewilding efforts across Europe. Recognizing that early humans co-created ecosystems foregrounds a more dynamic view of human agency within nature and encourages nuanced strategies that account for long-standing anthropogenic influences instead of aspiring toward a hypothetical untouched wilderness.

The study also highlights profound differences across epochs. While Neanderthals shaped environments to a measurable extent, Mesolithic hunter-gatherers’ impacts were both quantitatively and qualitatively greater, reflecting demographic expansions and cultural advancements in fire use and hunting technologies. Moreover, the disappearance of megafauna in the Holocene aligns with intensified human pressure, underscoring Homo sapiens’ unprecedented role in restructuring ecosystems globally.

While this research illuminates prehistoric human ecological impacts in Europe, knowledge gaps linger, especially regarding early hominin effects across different continents and time periods. The authors emphasize potential future studies employing similar computer simulations to examine North and South America and Australia, regions unpopulated by archaic hominins before Homo sapiens. Such comparisons may reveal unique trajectories of landscape transformation influenced solely by anatomically modern humans.

Local-scale studies remain indispensable complements to continental models. High-resolution archaeological and paleoecological investigations can elucidate the nuanced spatial and temporal variability of human-environment interactions, refining the broader patterns revealed by simulations. This synergy between macro-modeling and detailed empirical research promises richer insights into humanity’s deep ecological history.

In sum, this pioneering work redefines prehistoric hunter-gatherers from passive consumers of resources to active, large-scale ecosystem engineers. Both Neanderthals and Mesolithic Homo sapiens significantly shaped Europe’s vegetation thousands of years before the Neolithic revolution introduced farming. By integrating cutting-edge computational modeling with multidisciplinary data, the study unveils a more intricate narrative of human ecological legacy—one that challenges stereotypes and enriches our understanding of nature’s co-evolution with humankind.

Subject of Research:
Ecological impact of prehistoric hunter-gatherers on European vegetation during the Last Interglacial and Early Holocene periods.

Article Title:
On the ecological impact of prehistoric hunter-gatherers in Europe: Early Holocene (Mesolithic) and Last Interglacial (Neanderthal) foragers compared

News Publication Date:
22-Oct-2025

Web References:
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0328218

References:
Published article in PLOS One, 22 October 2025.

Keywords:
Prehistoric human impact, Neanderthals, Mesolithic hunter-gatherers, European vegetation, ecological simulation, pollen analysis, megafauna, fire ecology, landscape transformation, computational modeling, interdisciplinary research

Tags: ancient human ancestorsanthropogenic landscape changesclimate and ecological interactionsevolution of early human practicesfire management in prehistoryhuman impact on vegetationmegafauna and landscapesMesolithic hunter-gatherersmodeling ancient ecosystemsNeanderthal fire usepollen records in archaeologyprehistoric European landscapes

Tags: Computational ecological modelingMesolithic landscape transformationNeanderthal fire ecologyPollen analysis in archaeologyPrehistoric human-environment interaction
Share12Tweet8Share2ShareShareShare2

Related Posts

Climate Change Threatens Energy-Water-Food Nexus in Dera

Climate Change Threatens Energy-Water-Food Nexus in Dera

October 23, 2025
blank

Elevational Patterns of Regeneration in Himalayan Oak Forests

October 23, 2025

Fungal Enzymes: Eco-Friendly Mealybug Control in Mulberry

October 23, 2025

Automated Online Monitoring System Revolutionizes Continuous Cropping Farmland Pollution Tracking

October 23, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1277 shares
    Share 510 Tweet 319
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    308 shares
    Share 123 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    170 shares
    Share 68 Tweet 43
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    132 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Sweden’s Unique COVID-19 Public Health Strategy

Erythropoietin Levels in Hemoglobin E β-Thalassemia Patients

Psilocybin Combined with Mindfulness Offers Hope for Treating Depression in Healthcare Workers

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.