• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Nature prefers asymmetrical pollen grains, study finds

Bioengineer by Bioengineer
February 12, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: SEM images: Asja Radja; Simulations: Asja Radja and Maxim Lavrentovich.


It’s no secret that pollen plays a vital role in plant reproduction worldwide, including the production of food. But for decades, scientists have been puzzled about the variety of patterns on the surface of these pollen grains–specifically, how they are formed and if they have a function.

A study published in Cell sheds some light on the subject, showing that plants favor the production of uneven, asymmetrical patterns on the surface of pollen grains over more symmetrical patterns.

“The pollen wall itself–the surface of a pollen grain–serves the important function of protecting the pollen grain genetic material from the environment as the pollen travels during the process of pollination. However, the function of the precise pattern on this surface is not well understood,” said Maxim Lavrentovich, assistant professor of theoretical biophysics in the Department of Physics and Astronomy at the University of Tennessee, Knoxville, and coauthor of the study.

Researchers observed that in approximately 10 percent of living plant species the formation of symmetrical, identical, and reproducible pollen grains occurs when the phase separation of pollen production reaches a point of equilibrium.

“A phase separation is the process by which an initially mixed system equilibrates into two or more distinct materials. The separation of oil from water in a bowl of soup is a good example of this,” said Lavrentovich. “In this case, what gets separated is a low-density mixture of polysaccharides from a high-density one.”

In contrast, the other 90 percent of living plant species either never reach the equilibrium point and produce asymmetrical pollen grains, or achieve smooth, un-patterned grains.

This predominance shows, according to Lavrentovich, that nature does not favor a point of equilibrium in most plant seeds during their evolution process.

For the study, researchers distilled biological features of the pollen pattern development and used that information to construct a physical model of these essential features.

The evolutionary analysis shows that natural selection does not favor symmetrical, uniform pollen patterns, but rather that plants more rapidly develop more disordered, asymmetrical patterns. These disordered patterns are captured in the biophysical model through a kinetic arrest of the pattern evolution.

“We used a simple biophysical model to explain the biological process of pattern creation,” said Lavrentovich. “In the future, we would like to refine our model by better characterizing both the physical and chemical parameters of the phase separation process.”

The findings provide a better understanding of the pattern-forming process of pollen grains. In a more practical setting, they could help in future efforts to produce artificial pollen.

“Many plant species undergo the pollination process successfully with symmetrically or asymmetrically patterned pollen grains. Still, understanding if these differences have some kind of impact is important for applications such as constructing new patterned materials using a pollen-like physical mechanism and for the categorization of plant species,” said Lavrentovich.

###

The paper, “Pollen Cell Wall Patterns Form from Modulated Phases,” was written in collaboration with researchers Asja Radja, Eric M. Horsley, and Alison Sweeney, all from the Department of Physics and Astronomy at the University of Pennsylvania.

CONTACT:
Andrea Schneibel ([email protected], 865-974-3993)

Media Contact
Andrea Schneibel
[email protected]
865-974-3993

Original Source

https://news.utk.edu/2019/02/12/nature-prefers-asymmetrical-pollen-grains-study-finds/

Related Journal Article

http://dx.doi.org/10.1016/j.cell.2019.01.014

Tags: Biomechanics/BiophysicsCell BiologyChemistry/Physics/Materials SciencesEvolutionPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

New Insights into Evolution Revealed Through Lizard Genetics

October 8, 2025
blank

Cell-Free DNA Reflects Tumor Transcription Factor Activity

October 8, 2025

New Method to Monitor Wild Reindeer Populations Could Boost Conservation Efforts

October 8, 2025

New Molecular Method Detects Varroa Destructor in Nigeria

October 8, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1051 shares
    Share 420 Tweet 263
  • New Study Reveals the Science Behind Exercise and Weight Loss

    99 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    95 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    78 shares
    Share 31 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

TROP2: A Target for Cisplatin-Resistant Germ Cell Tumors

New Insights into Evolution Revealed Through Lizard Genetics

Prenatal Vitamin D and Long-Term Brain Health

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.