• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Nasal mist vaccine suppresses peanut allergy in mice

Bioengineer by Bioengineer
April 11, 2018
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

McLean, VA (April 11, 2018) – A vaccine delivered as an ultrafine nasal spray was found to limit or prevent peanut allergy symptoms in mice that had been sensitized to peanut, according to a study published today in the Journal of Allergy and Clinical Immunology and supported by Food Allergy Research & Education, the leading organization working on behalf of patients with food allergies and the largest source of private funding for food allergy research.

Researchers with the Mary H. Weiser Food Allergy Center at the University of Michigan developed the vaccine as a new form of immunotherapy to treat allergies to peanut.

"Right now, the only FDA-approved way to address food allergy is to avoid the food or suppress allergic reactions after they have already started," said lead author Jessica O'Konek, Ph.D. "Our goal is to use immunotherapy to change the immune system's response by developing a therapeutic vaccine for food allergies."

During an allergic reaction, the body's immune system overreacts to an allergen, that is, an otherwise harmless protein. Allergen immunotherapy attempts to retrain the immune system to tolerate the allergen. Other peanut allergy immunotherapies being tested in human clinical trials have been shown to improve peanut tolerance in many, but not all, peanut allergy patients. This tolerance can be lost if maintenance doses of peanut are discontinued; additionally, adverse reactions can occur during immunotherapy.

"We are committed to the development of new food allergy immunotherapies and pleased to report these promising results," said Mary Jane Marchisotto, FARE's senior vice president for research and international operations. "This serious and potentially life-threatening disease affects 15 million Americans and is becoming increasingly prevalent. Emergency care for severe allergic reactions has increased almost 400 percent during the past decade. Effective treatments are urgently needed."

The vaccine research team is working to develop a safe, durable and more widely effective new form of immunotherapy. The experimental immunotherapy vaccine consists of peanut protein and nano-emulsion, tiny droplets of highly purified soybean oil, detergents and water mixed at high speed. The average diameter of the droplets is 350-400 nanometers, roughly 200 times smaller than the average diameter a human hair.

The nano-emulsion acts as an adjuvant, a substance that is added to a vaccine to increase the body's immune response. Nano-emulsion has previously been shown to promote a strong immune response associated with fighting infection. Researchers theorized that this infection-fighting response would suppress a competing allergic response. Because the highly purified soybean oil contains no soy proteins, treatment with the nano-emulsion does not result in the development of soy allergies and does not trigger soy allergy reactions.

The mice were experimentally sensitized to peanut to mimic the effects of peanut allergy, then were given three doses of intranasal vaccine over the course of two months, receiving either peanut plus nano-emulsion or a placebo. Two weeks after the final vaccination, the mice were exposed to peanut and their symptoms and immune functions were assessed. Compared to mice who were treated with a placebo, the mice who received the nano-emulsion vaccine were protected against localized symptoms of allergic reaction, such as itchiness and puffy eyes, as well as more severe symptoms, such as wheezing and shock.

"We're changing the way the immune cells respond upon exposure to allergens," O'Konek explained. "By re-directing the immune responses, our vaccine not only suppresses the response but prevents the activation of cells that would initiate allergic reactions. Importantly, we can do this after allergy is established, which provides for potential therapy of allergies in humans."

Additional studies in mice are ongoing to determine if the vaccine's protection will endure over a longer period. Future studies in mice may reveal more details about the mechanisms responsible for that protection. If successful, these experiments could eventually lead to a clinical trial of the vaccine in humans.

###

O'Konek was the recipient of a 2015 FARE Investigator in Food Allergy Award for new investigators. Panelists reviewing the award applications did not evaluate award categories that included applicants from the panelist's home institution. Her study was also supported by the Department of Defense.

ABOUT FARE

Food Allergy Research & Education (FARE) works on behalf of the 15 million Americans with food allergies, including all those at risk for life-threatening anaphylaxis. This potentially deadly disease affects 1 in every 13 children in the U.S. – or roughly two in every classroom. FARE's mission is to improve the quality of life and the health of individuals with food allergies, and to provide them hope through the promise of new treatments. Our work is organized around three core tenets: LIFE – support the ability of individuals with food allergies to live safe, productive lives with the respect of others through our education and advocacy initiatives; HEALTH – enhance the healthcare access of individuals with food allergies to state-of-the-art diagnosis and treatment; and HOPE – encourage and fund research in both industry and academia that promises new therapies to improve the allergic condition. For more information, please visit http://www.foodallergy.org.

Media Contact

Nancy Gregory
[email protected]
703-563-3066
@foodallergy

http://www.foodallergy.org

https://www.foodallergy.org/about/media-press-room/nasal-mist-vaccine-suppresses-peanut-allergy-in-mice

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Brain Neurons Play Key Role in Daily Regulation of Blood Sugar Levels

August 22, 2025
Simon Family Supports Stevens INI in Advancing Global Alzheimer’s Research

Simon Family Supports Stevens INI in Advancing Global Alzheimer’s Research

August 21, 2025

Consistent Sleep Patterns Linked to Enhanced Heart Failure Recovery, Study Reveals

August 21, 2025

Whole Exome Sequencing Links FANCM to ER-Negative Breast Cancer

August 21, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI Uncovers ‘Self-Optimizing’ Mechanism in Magnesium-Based Thermoelectric Materials

Natural Disinfectants: Their Role in Prosthodontics and Oral Implantology

Brain Neurons Play Key Role in Daily Regulation of Blood Sugar Levels

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.