• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

NASA restarts rigorous vibration testing on the James Webb Space Telescope

Bioengineer by Bioengineer
January 25, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Credits: NASA/Chris Gunn

Testing on the James Webb Space Telescope successfully resumed last week at NASA's Goddard Space Flight Center, in Greenbelt, Maryland.

On December 3, 2016, vibration testing automatically shut down early due to some sensor readings that exceeded predicted levels. After a thorough investigation, the James Webb Space Telescope team at NASA Goddard determined that the cause was extremely small motions of the numerous tie-downs or "launch restraint mechanisms" that keep one of the telescope's mirror wings folded-up for launch.

"In-depth analysis of the test sensor data and detailed computer simulations confirmed that the input vibration was strong enough and the resonance of the telescope high enough at specific vibration frequencies to generate these tiny motions. Now that we understand how it happened, we have implemented changes to the test profile to prevent it from happening again," said Lee Feinberg, an engineer and James Webb Space Telescope Optical Telescope Element Manager at Goddard. "We have learned valuable lessons that will be applied to the final pre-launch tests of Webb at the observatory level once it is fully assembled in 2018. Fortunately, by learning these lessons early, we've been able to add diagnostic tests that let us show how the ground vibration test itself is more severe than the launch vibration environment in a way that can give us confidence that the launch itself will be fully successful."

The team resumed testing last week picking up where they left off in December. The test was successfully completed. Now that vibration testing along this one direction or "axis" is finished, the team is now moving forward with shaking the telescope in the other two directions to show that it can withstand vibrations in all three dimensions.

"This was a great team effort between the NASA Goddard team, Northrop Grumman, Orbital ATK, Ball Aerospace, the European Space Agency, and Arianespace,­­" Feinberg said. "While we can now proceed with the current tests of the telescope and instruments."

The James Webb Space Telescope is the world's most advanced space observatory. This engineering marvel is designed to unravel some of the greatest mysteries of the universe, from discovering the first stars and galaxies that formed after the Big Bang to studying the atmospheres of planets around other stars. Before the Webb is declared ready for launch, engineers and technicians rigorously test it to demonstrate all aspects of the mission and launch survivability.

"Testing on the ground is critical to proving a spacecraft is safe to launch," Feinberg said. "The Webb telescope is the most dynamically complicated article of space hardware that we've ever tested."

At Goddard, engineers test space hardware in vibration and acoustics test facilities that simulate environment to ensure that functionality is not impaired by the rigorous ride on a rocket into space. Rocket launches create high levels of vibration and noise that rattle spacecraft and telescopes. Ground testing is done to simulate the launch induced vibration and noise to ensure a solid design and assembly of the telescope before launch.

"Due to its immense size, Webb has to be folded-up for launch and then unfolded in space. Prior generations of telescopes relied on rigid, non-moving structures for their stability. Because our mirror is larger than the rocket faring we needed structures folded for launch and moved once we're out of Earth's atmosphere. Webb is the first time we're building for both stability and mobility." Feinberg said. "This means that JWST testing is very unique, complex, and challenging."

In addition to the mirror, many other parts of JWST must deploy, and each have their own unique set of challenges for testing and launch.

NASA is working with ESA and their launch company, Arianespace, to ensure that the adjustments just made to Webb's vibration testing adequately envelopes the launch vibration environment, plus some margin. The mission continues to be on track and within budget for a 2018 launch.

The most powerful space telescope ever built, the Webb telescope will provide images of the first galaxies ever formed, and explore planets around distant stars. It is a joint project of NASA, the European Space Agency and the Canadian Space Agency.

For more information about the Webb telescope, visit: http://www.jwst.nasa.gov or http://www.nasa.gov/webb

###

Media Contact

Rob Gutro
[email protected]
@NASAGoddard

http://www.nasa.gov/goddard

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Exploring Water Absorption in Footballs: Leather vs. Synthetic

Exploring Water Absorption in Footballs: Leather vs. Synthetic

September 13, 2025
Grape and Olive Waste Transformed Into Asphalt Antioxidants

Grape and Olive Waste Transformed Into Asphalt Antioxidants

September 13, 2025

Enhancing Co-Composting: Quicklime Boosts Nutrient Recovery

September 13, 2025

Adverse Events in Asian Adults on Brivaracetam

September 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Water Absorption in Footballs: Leather vs. Synthetic

Grape and Olive Waste Transformed Into Asphalt Antioxidants

Enhancing Co-Composting: Quicklime Boosts Nutrient Recovery

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.