• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

NASA and MIT Collaborate to develop space-based quantum-dot spectrometer

Bioengineer by Bioengineer
February 14, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Credits: NASA/W. Hrybyk

A NASA technologist has teamed with the inventor of a new nanotechnology that could transform the way space scientists build spectrometers, the all-important device used by virtually all scientific disciplines to measure the properties of light emanating from astronomical objects, including Earth itself.

Mahmooda Sultana, a research engineer at NASA's Goddard Space Flight Center in Greenbelt, Maryland, now is collaborating with Moungi Bawendi, a chemistry professor at the Cambridge-based Massachusetts Institute of Technology, or MIT, to develop a prototype imaging spectrometer based on the emerging quantum-dot technology that Bawendi's group pioneered.

NASA's Center Innovation Fund, which supports potentially trailblazing, high-risk technologies, is funding the effort.

Introducing Quantum Dots

Quantum dots are a type of semiconductor nanocrystal discovered in the early 1980s. Invisible to the naked eye, the dots have proven in testing to absorb different wavelengths of light depending on their size, shape, and chemical composition. The technology is promising to applications that rely on the analysis of light, including smartphone cameras, medical devices, and environmental-testing equipment.

"This is as novel as it gets," Sultana said, referring to the technology that she believes could miniaturize and potentially revolutionize space-based spectrometers, particularly those used on uninhabited aerial vehicles and small satellites. "It really could simplify instrument integration."

Absorption spectrometers, as their name implies, measure the absorption of light as a function of frequency or wavelength due to its interaction with a sample, such as atmospheric gases.

After passing through or interacting with the sample, the light reaches the spectrometer. Traditional spectrometers use gratings, prisms, or interference filters to split the light into its component wavelengths, which their detector pixels then detect to produce spectra. The more intense the absorption in the spectra, the greater the presence of a specific chemical.

While space-based spectrometers are getting smaller due to miniaturization, they still are relatively large, Sultana said. "Higher-spectral resolution requires long optical paths for instruments that use gratings and prisms. This often results in large instruments. Whereas here, with quantum dots that act like filters that absorb different wavelengths depending on their size and shape, we can make an ultra-compact instrument. In other words, you could eliminate optical parts, like gratings, prisms, and interference filters."

Just as important, the technology allows the instrument developer to generate nearly an unlimited number of different dots. As their size decreases, the wavelength of the light that the quantum dots will absorb decreases. "This makes it possible to produce a continuously tunable, yet distinct, set of absorptive filters where each pixel is made of a quantum dot of a specific size, shape, or composition. We would have precise control over what each dot absorbs. We could literally customize the instrument to observe many different bands with high-spectral resolution."

Prototype Instrument Under Development

With her NASA technology-development support, Sultana is working to develop, qualify through thermal vacuum and vibration tests, and demonstrate a 20-by-20 quantum-dot array sensitive to visible wavelengths needed to image the sun and the aurora. However, the technology easily can be expanded to cover a broader range of wavelengths, from ultraviolet to mid-infrared, which may find many potential space applications in Earth science, heliophysics, and planetary science, she said.

Under the collaboration, Sultana is developing an instrument concept particularly for a CubeSat application and MIT doctoral student Jason Yoo is investigating techniques for synthesizing different precursor chemicals to create the dots and then printing them onto a suitable substrate. "Ultimately, we would want to print the dots directly onto the detector pixels," she said.

"This is a very innovative technology," Sultana added, conceding that it is very early in its development. "But we're trying to raise its technology-readiness level very quickly. Several space-science opportunities that could benefit are in the pipeline."

###

For more Goddard technology news, go to: http://gsfctechnology.gsfc.nasa.gov/newsletter/Current.pdf

Media Contact

lori keesey
lori.keesey@nasa.gov
@NASAGoddard

http://www.nasa.gov/goddard

############

Story Source: Materials provided by Scienmag

Share15Tweet8Share2ShareShareShare2

Related Posts

Childhood Obesity Linked to Adult Gallstones, Shared Genes

Childhood Obesity Linked to Adult Gallstones, Shared Genes

August 22, 2025
blank

Biomimetic Magnetobots Revolutionize Pneumonia Treatment

August 22, 2025

ERBB3 Drives Ferroptosis by Altering Lipids in Cancer

August 22, 2025

University of Ottawa Enters the Betavoltaic Battery Commercialization Arena

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Childhood Obesity Linked to Adult Gallstones, Shared Genes

Biomimetic Magnetobots Revolutionize Pneumonia Treatment

ERBB3 Drives Ferroptosis by Altering Lipids in Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.