• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Nanoscale thermometers from diamond sparkles

Bioengineer by Bioengineer
May 3, 2019
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A novel, non-invasive technique that uses quantum light to measure temperature at the nanoscale has been developed

Being able to measure, and monitor, temperatures and temperature changes at miniscule scales–inside a cell or in micro and nano-electronic components–has the potential to impact many areas of research from disease detection to a major challenge of modern computation and communication technologies, how to measure scalability and performance in electronic components.

A collaborative team, led by scientists from the University of Technology Sydney (UTS), developed a highly-sensitive nano-thermometer that uses atom-like inclusions in diamond nanoparticles to accurately measure temperature at the nanoscale. The sensor exploits the properties of these atom-like diamond inclusions on the quantum level, where the limits of classical physics no longer apply.

Diamond nanoparticles are extremely small particles–up to 10,000 times smaller than the width of a human hair–that fluoresce when illuminated with a laser.

Senior Investigator, Dr Carlo Bradac, UTS School of Mathematical and Physical Sciences, said the new technique was not just a “proof-of-concept realisation.”

“The method is immediately deployable. We are currently using it for measuring temperature variations both in biological samples and in high-power electronic circuits whose performance strongly rely on monitoring and controlling their temperature with sensitivities and at a scale hard to achieve with other methods,” Dr Bradac said.

The study published in Science Advances, is a collaboration between UTS researchers and international collaborators from the Russian Academy of Science (RU), Nanyang Technological University (SG) and Harvard University (US).

Lead author, UTS physicist Dr Trong Toan Tran, explained that although pure diamond is transparent it “usually contains imperfections such as inclusions of foreign atoms.”

“Beyond giving the diamond different colours, yellow, pink, blue, etc. the imperfections emit light at specific wavelengths [colours] when probed with a laser beam,” says Dr Tran.

The researchers found that there is a special regime–referred to as Anti-Stokes–in which the intensity of the light emitted by these diamond colour impurities depends very strongly on the temperature of the surrounding environment. Because these diamond nanoparticles can be as small as just a few nanometres they can be used as tiny nano-thermometers.

“We immediately realised we could harness this peculiar fluorescence-temperature dependence and use diamond nanoparticles as ultra-small temperature probes,” Dr Bradac said.

“This is particularly attractive as diamond is known to be non-toxic–thus suitable for measurements in delicate biological environments–as well as extremely resilient–hence ideal for measuring temperatures in very harsh environments up to several hundreds of degrees,” he added.

The researchers say that an important advantage of the technique is that it is all-optical. The measurement only requires placing a droplet of the nanoparticles-in-water solution in contact with the sample and then measuring–non-invasively–their optical fluorescence as a laser beam is shone on them.

Although similar all-optical approaches using nanoparticles have successfully measured temperatures at the nanoscale, the research team believes that none have been able to achieve both the sensitivity and the spatial resolution of the technique developed at UTS.
“We believe our sensor can measure temperatures with a sensitivity which is comparable–or superior–to that of the current best all-optical micro- and nano-thermometers, while featuring the highest spatial resolution to date,” Dr Tran said.

The researchers at UTS highlighted that nanoscale thermometry was the most obvious–yet far from the only–application exploiting the Anti-Stokes regime in quantum systems. The regime can form the basis for exploring fundamental light-matter interactions in isolated quantum systems at energies conventionally unexplored. It opens up new possibilities for a plethora of practical nanoscale sensing technologies, some as exotic as optical refrigeration where light is used to cool down objects.

###

The University of Technology Sydney (UTS), located in central Sydney, is one of Australia’s leading universities of technology. It is known for fusing innovation, creativity and technology in its teaching and research and for being an industry-focused university. UTS has a total enrolment of over 40,000 students and is rated No.1 ‘young’ university in Australia in both the QS and Times Higher Education rankings. For more information go to uts.edu.au.

Media Contact
Marea Martlew
[email protected]
http://dx.doi.org/10.1126/sciadv.aav9180

Tags: Atomic PhysicsChemistry/Physics/Materials SciencesDiagnosticsNanotechnology/MicromachinesResearch/Development
Share13Tweet8Share2ShareShareShare2

Related Posts

Bright Excitons Enable Optical Spin State Control

Bright Excitons Enable Optical Spin State Control

August 3, 2025
blank

Flame Synthesis Creates Custom High-Entropy Metal Nanomaterials

August 2, 2025

Innovative Acid-Base Bifunctional Catalyst Enhances Production of Essential Lithium-Ion Battery Material

August 1, 2025

Oven-Temperature Treatment (~300℃) Enhances Catalyst Performance by Six Times

August 1, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    49 shares
    Share 20 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Low-Cost Liquid Optical Waveguide Boosts Augmented Reality

Predicting Colorectal Cancer Using Lifestyle Factors

Optical Matrix Multipliers Revolutionize Image Encoding and Decoding

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.