• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, January 19, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Nanoscale spectroscopy review showcases a bright future

Bioengineer by Bioengineer
March 4, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Modern society is working closer to the nanoscale than it realises

IMAGE

Credit: Luco Bravo Unsplash


Modern society is working closer to the nanoscale than it realises. Breakthroughs and advances in developing and manipulating nanostructures have led to technological progress that not only drives imaging and sensing devices but also makes possible mainstays of modern life such as touch screens and high resolution LED displays.

A new review authored by international leaders in their field, and published in Nature, focuses on the luminescent nanoparticles at the heart of many advances and the opportunities and challenges for these technologies to reach their full potential.

Senior author, Professor Dayong Jin, says that by trying to understand how single nanoparticles behave scientists are asking very fundamental questions to develop tools that can be used to realise technological breakthroughs in diverse areas including personalised medicine, cyber security and quantum communication.

“The purpose of this field is to really understand the properties of these artificial atoms so that their properties can be controlled and tailored for the application we need,” he says. Professor Jin is the Director of the University of Technology Sydney (UTS) Institute for Biomedical Materials & Devices (IBMD) and director of UTS-SUStech Joint Research Centre for Biomedical Materials & Devices.

The paper charts the rise of single molecule measurements and the rapid progress in optical microscopy that made it possible to ‘see’ the fluorescence of single photons and, thereby, the discovery of the underlying photophysics of the nanoscale. From quantum dots to carbon dots, fluorescent nanodiamonds and nanoparticles fabricated from obscure minerals such as perovskite – all promising tools for applications as diverse as imaging, biomarker detection and data storage.

But as the authors admit “the closer we pursue the perfection in nanoparticle design, the harder the challenges become”.

Lead author Dr Jiajia Zhou from UTS IBMD, who specialises in building single particle optical spectroscopy to uncover the more unpredictable behaviour of nanoparticles, says that there is demand for smaller and more efficient nanoparticles with new desirable functions and characteristics.

“Especially for biomedical and intracellular applications such as molecular probes and sensors. Here we are talking about only a few nanometers in size where the challenge in forming uniform nanoparticles and controlling their shape, size and optical properties requires new knowledge about nanoparticle surface chemistry, for example,” she says.

Still, in a very fast moving field the potential seems only to be limited by scientific imagination and, more likely, the ability of scientific and engineering disciplines to integrate knowledge and skills, the authors say.

“This paper is a large survey and highlights the need for a global effort and resources towards the fundamental research needed to keep pushing the boundaries of what is possible at the nanoscale, so society can benefit from the many emerging opportunities,” Professor Jin says.

Professor Jin imagines a world where nanoscale tweezing is used to assemble hybrid nanoparticle- based devices and where biomedical signatures can be used to answer questions around an individual’s response to drug therapies, all from one drop of blood.

“Everyday when people enjoy using smartphones and touch screens to send messages, and high resolution screen displays to view images and watch videos, they might forget where this technology comes from.

“These technologies may look like engineering projects but really they are the result of decades of research from scientists and students working ‘in the dark’ to answer fundamental questions about how nature works at the smallest of scales,” he said.

###

Co-authors include Dr Alexey Chizhik from University of Gottingen and Nobel Laureate Professor Steven Chu from Stanford University.

Media Contact
Marea Martlew
[email protected]
61-424-735-255

Related Journal Article

http://dx.doi.org/10.1038/s41586-020-2048-8

Tags: Chemistry/Physics/Materials SciencesNanotechnology/MicromachinesTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Creating Synthetic Protein-Binding DNA Systems in Cells

January 17, 2026
blank

Chiral Catalysis Powers Rotary Molecular Motors

January 16, 2026

Selective GlcNAc to GalNAc Epimerization via Kinetic Control

January 15, 2026

Thermal [2+2] Cycloaddition Builds Gem-Difluoro Bicycloalkanes

January 13, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    148 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    78 shares
    Share 31 Tweet 20
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Trinidadian Guppies Use Male-Male Social Cues

Cyclosporine Side Effects in Aplastic Anemia Treatment

Biofloc Technology Boosts Climbing Perch Fry Growth

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.