• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Nanoparticles hitchhiking their way along strands of hair

Bioengineer by Bioengineer
January 27, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In shampoo ads, hair always looks like a shiny, smooth surface. But for physicists peering into microscopes, the hair surface looks much more rugged, as it is made of saw-tooth, ratchet-like scales. In a new theoretical study published in EPJ E, Matthias Radtke and Roland Netz have demonstrated that massaging hair can help to apply drug treatment – encapsulated in nanoparticles trapped in the channels formed around individual hairs – to the hair roots. This is because the oscillatory movement of the massaging directs the way these particles are transported.

This phenomenon was previously discovered in experiments on pork skin samples, which were conducted by Jürgen Lademann, dermatologist at the Charité clinic in Berlin, Germany, and his team. It is also relevant at the microscopic scale, in the transport on microtubules taking place in two directions between the cells within our bodies. By constrast, these findings could also help find ways of preventing harmful nanoparticles from being transported along hairs into the wrong places.

In their work, the authors created a model in which a nanoparticle moves between two asymmetric surfaces. Using standard models of random motion, they moved one surface in an oscillatory fashion relative to the other. They demonstrated by virtue of their corrugated surfaces that channels created between individual hairs and the surrounding skin lead to nanoparticles being sucked into hair follicles if the hair is massaged, thanks to a "ratchet" mechanism.

Further, the authors determined optimal transport conditions for different surface structures by varying the driving frequency, particle size, and the amplitude of the corrugated surface. They found that the ratchet effect switches from a flashing to a pushing effect, when the oscillation switches from perpendicular to parallel to the resting surface, respectively. Radtke and Netz also found that nanoparticles' speed and ability to diffuse are greatly enhanced by the parallel oscillatory motion.

###

Reference: Ratchet effect for two-dimensional nanoparticle motion in a corrugated oscillating channel. M. Radtke, R.Netz (2016), Eur. Phys. J. E 39: 116, DOI 10.1140/epje/i2016-16116-4

Media Contact

Sabine Lehr
[email protected]
49-622-148-78336
@SpringerNature

http://www.springer.com

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Revolutionizing Lactate Metabolism in Polycystic Ovary Syndrome

October 14, 2025

New Study Aims to Improve Cancer Cachexia Diagnosis

October 14, 2025

Transforming Clinician Perspectives on Out-of-Office BP Monitoring

October 14, 2025

Agroforestry: Key to Sustainable Livelihoods in Amhara

October 14, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1241 shares
    Share 496 Tweet 310
  • New Study Reveals the Science Behind Exercise and Weight Loss

    105 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    92 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionizing Lactate Metabolism in Polycystic Ovary Syndrome

New Study Aims to Improve Cancer Cachexia Diagnosis

Transforming Clinician Perspectives on Out-of-Office BP Monitoring

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.