• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Nanoparticle paves the way for new triple negative breast cancer drug

Bioengineer by Bioengineer
March 16, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: University of Bradford

A potential new drug to tackle the highly aggressive 'triple negative' breast cancer – and a nanoparticle to deliver it directly into the cancer cells – have been developed by UK researchers.

The drug is a peptide (fragment of a protein) discovered by Professor Mohamed El-Tanani at the University of Bradford's Institute for Cancer Therapeutics. Professor El-Tanani has shown in computer models that the peptide blocks a protein called RAN which helps cancer cells to divide and grow. High levels of RAN have been linked to aggressive tumour growth, cancer spread, resistance to chemotherapy and poor prognosis in a number of cancers, including triple negative breast cancer (TNBC).

"We knew we'd need a novel delivery mechanism for this drug because peptides on their own are unstable and they can degrade too quickly to be effective," explains Professor El Tanani. "Using a nanoparticle as a delivery mechanism was the perfect solution."

Working with colleagues from Ulster University, Sunderland and Queen's University Belfast, the team developed a nanoparticle from a biodegradable polymer that could encapsulate the peptide. They tested various different polymers in order to determine which was most effective at helping the protein enter the cancer cells and attack them.

Laboratory tests showed that when this nanoparticle, loaded with the peptide, was added to the triple negative breast cancer cells, the cells would actively take it in. Their growth rate then reduced, they stopped replicating and around two thirds of the cells died within 24 hours. This compared with the peptide on its own, or an empty nanoparticle, which had no impact on the cells' growth.

The researchers also confirmed that the drug was killing the cancer cells through the mechanism they had seen in their computer models – by blocking the action of RAN which plays an important role in cell division and growth.

Previous research by Professor El-Tanani has shown that blocking RAN can also prevent or even reverse resistance to chemotherapy in small cell lung cancer.

Between 10-20 per cent of breast cancers are found to be triple negative – which means the cancer does not have receptors for the hormones oestrogen and progesterone or the protein HER2. This limits the range of treatments that can be used, resulting in poorer prognosis and increased risk of recurrence.

"By developing a nanoparticle that can help this peptide enter triple negative breast cancer cells and block RAN we've brought this potential new treatment a step closer to the clinic," said Professor El-Tanani. "We're already working on in vivo tests of the nanoparticle in a triple negative breast cancer model and are thinking ahead to taking this drug into clinical trials."

Professor El-Tanani is also working on a number of other potential RAN inhibitors, including a 'repurposed' drug that has been already pre-clinically validated in breast and lung cancer and is ready for clinical trials. The University of Bradford is actively seeking further funding and investor support to support the development of these drug candidates.

The findings are published in the International Journal of Pharmaceutics.

###

Media Contact

Mark Thompson
[email protected]
44-012-742-36510
@BradfordUni

http://www.bradford.ac.uk

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Unraveling How Sugars Influence the Inflammatory Disease Process

November 4, 2025
blank

Parkinson’s Mouse Model Reveals How Noise Impairs Movement

November 4, 2025

Demographic Changes May Drive Rise in Drug-Resistant Infections Across Europe

November 4, 2025

Integrating Medical Student Mentors in Engineering Teams

November 4, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unraveling How Sugars Influence the Inflammatory Disease Process

Parkinson’s Mouse Model Reveals How Noise Impairs Movement

Demographic Changes May Drive Rise in Drug-Resistant Infections Across Europe

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.