• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Nanoparticle delivery of FZD4 to lung endothelial cells inhibits lung cancer progression and metastases

Bioengineer by Bioengineer
April 16, 2024
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A recent breakthrough study from the lab of Tanya Kalin, MD, PhD, professor of Child Health and Internal Medicine at the University of Arizona College of Medicine – Phoenix, has shown potential to improve therapeutic outcomes for patients suffering from lung cancers.

Tanya Kalin, MD, PhD

Credit: UArizona Health Sciences

A recent breakthrough study from the lab of Tanya Kalin, MD, PhD, professor of Child Health and Internal Medicine at the University of Arizona College of Medicine – Phoenix, has shown potential to improve therapeutic outcomes for patients suffering from lung cancers.

“We have identified the novel protein FOXF1 that stabilizes blood vessels inside the lung tumors, decreases intertumoral hypoxia and prevents lung cancer metastases,” explained Dr. Kalin, the senior author on this study.

Lung cancer remains the leading cause of cancer-related mortality worldwide, according to the American Lung Association. In 2021 alone, the disease accounted for 22% of all cancer deaths. With less than a 20% five-year survival rate for patients with advanced non-small cell lung cancers, a promising treatment approach like this is desperately needed.

In pursuit of more therapeutic approaches, the Dr. Kalin’s lab developed a nanoparticle delivery system to successfully deliver FZD4 to pulmonary endothelium, which decreased lung tumor growth and metastasis in pre-clinical models of lung cancer. Thus, increasing levels of FOXF1 or FZD4 — either genetically or via gene therapy — shows promise to improve therapeutic outcomes in lung cancer patients.

The studies from Dr. Kalin’s group support the use of FOXF1 — or FZD4-activating — therapies to enhance the delivery of chemotherapeutic agents or immune checkpoint inhibitors during lung cancer treatment.

“Since targeting the FOXF1/FZD4 signaling using gene therapy had efficiently decreased lung cancer progression and normalized tumor blood vessels, our next step will be to develop pharmacological approach to activate this signaling pathway and to move this therapy into clinical trials,” Dr. Kalin said.

Dr. Kalin, who also serves as vice chair of translational research for Phoenix Children’s Center for Cancer and Blood Disorders, published the findings in EMBO Molecular Medicine. The manuscript demonstrated that FOXF1 is expressed in normal lung endothelial cells, but it is decreased in the tumor-associated vasculature of lung cancers. Using the Cancer Genome Atlas datasets, they showed that lung cancer patients with higher FOXF1 mRNA expression had increased survival compared to those with lower FOXF1 levels.

Dr. Kalin and her team then actively removed the FOXF1 gene from endothelial cells, using gene-editing technology. The effects of this were staggering. Removal of FOXF1 in their models promoted lung tumor growth and metastasis; caused functional and structural abnormalities in tumor vasculature; and led to a lack of frizzled-4 (FZD4) — a gene that participates in the Wnt/β-catenin signaling pathway, enacting a series of steps that affect the way cells and tissues develop.

Next, they increased FOXF1 gene expression in endothelial cells using a transgenic model of lung cancer. By increasing FOXF1 levels, they effectively inhibited lung tumor growth and metastasis, and stabilized tumor-associated blood vessels. They have also shown that FOXF1 directly activated FZD4, one of the Wnt/β-catenin signaling receptors.



Journal

EMBO Molecular Medicine

DOI

10.1038/s44321-024-00064-8

Method of Research

Experimental study

Subject of Research

Animals

Article Title

FOXF1 promotes tumor vessel normalization and prevents lung cancer progression through FZD4

Article Publication Date

8-Apr-2024

COI Statement

The authors declare no competing interests. T Kalin is a member of the EMM Editorial Board. This has no bearing on the editorial consideration of this article for publication.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Hundreds of Satellite Systems Discovered Orbiting Dwarf Galaxies in New Survey

August 5, 2025
Harnessing Nature: Exploring Bush Basil Companion Plants for Organic Pest Control

Harnessing Nature: Exploring Bush Basil Companion Plants for Organic Pest Control

August 5, 2025

Diastereodivergent Routes to Multi-Substituted Cycloalkanes

August 5, 2025

UofL Study Reveals Amplified Liver Damage from Combined Exposure to Alcohol and “Forever Chemicals”

August 5, 2025

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    72 shares
    Share 29 Tweet 18
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

World Models Power End-to-End Accident Prediction

Deep Sequencing Reveals Plasmodium vivax Lineages

Enamel Rod-End Patterns: New Forensic ID Tool?

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.