• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Nanoparticle-based method shows promise in DNA vaccine delivery

Bioengineer by Bioengineer
December 19, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists at Brigham and Women's Hospital have developed a novel method for delivering therapeutic molecules into cells. The method harnesses gold nanoparticles that are electrically activated, causing them to oscillate and bore holes in cells' outer membranes and allowing key molecules — such as DNA, RNA, and proteins — to gain entry. Unlike other approaches, the nanoparticles are not tethered to their biological cargo, a refinement that can boost therapeutic potency and effectiveness.

The research team, led by Hadi Shafiee, PhD, assistant professor at Brigham and Women's Hospital, together with first author Mohamed Shehata Draz, PhD, evaluated the technique's ability to deliver a DNA vaccine — specifically, one against the hepatitis C virus (HCV) — into mice. They found that it induced a strong immune response, reflected by high levels of anti-HCV antibodies and immune cells that secrete specific inflammatory hormones. Importantly, Shafiee and his colleagues detected no signs of toxicity in the mice throughout the study period, which lasted nearly 3 months.

"Our concept is unique," says Draz. "Both the electric field parameters and the nanoparticle properties can be augmented to perform other important functions, such as precisely removing cells or blood clots."

There is growing interest in DNA vaccines. First, they offer a potential alternative to conventional vaccines, which are sometimes constructed using weakened microbes — either whole or specific parts. These foreign substances can pose risks to patients, which could potentially be minimized if DNA — now readily synthesized in the laboratory — is used instead. DNA vaccines also show promise as a tool for taming cancer growth.

Although Draz, Shafiee, and their colleagues began by applying their novel nanoparticle method to DNA vaccines, they underscore its wide-ranging applications.

"One of the really exciting aspects of this new method is that it enables drug delivery into tissues or cells in a universal way," says Shafiee. "We are eager to explore its use for other important biological molecules, including RNA."

###

Paper cited: M. S. Draz et al. "Electrically oscillating plasmonic nanoparticles for enhanced DNA vaccination against hepatitis C virus." Advanced Functional Materials Published online December 14, 2016. DOI: 10.1002/adfm.201604139

Media Contact

Lori Schroth
[email protected]
617-525-6374
@BrighamWomens

http://www.brighamandwomens.org

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Starting Heart Disease Prevention in Childhood

October 12, 2025

Linking Demographics, Clinical Factors, and Discrimination in Autism

October 12, 2025

Revolutionizing Drug Design with Graph-Transformer GANs

October 12, 2025

Ensuring Fair Infection Prevention for Vulnerable Groups

October 12, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1220 shares
    Share 487 Tweet 305
  • New Study Reveals the Science Behind Exercise and Weight Loss

    103 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    89 shares
    Share 36 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Starting Heart Disease Prevention in Childhood

Linking Demographics, Clinical Factors, and Discrimination in Autism

Revolutionizing Drug Design with Graph-Transformer GANs

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.