• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Nanobowl arrays endow perovskite solar cells with iridescent colors

Bioengineer by Bioengineer
July 9, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ©Science China Press

With the maturing of the perovskite solar cells (PSCs) technology, it is highly desirable to develop colorful solar cells to satisfy the requirements of aesthetic purposes in applications including building integrated photovoltaics and wearable electronics. The broad optical absorption and the large absorption coefficient of perovskites normally lead to high-efficiency cells with dark-brown colors. Till now, two representative approaches have been used to achieve colorful PSCs: (1) bandgap engineering and (2) structural colors. The former approach usually leads to considerably reduced power conversion efficiency (PCE) values (typically less than 13%) owing to diminished optical absorption associated with the enlarged bandgap. The latter approach takes advantage of engineered optical properties arising from patterned structures, enabling the generation of structural colors that are bright and dazzling. Despite the great efforts devoted to the colorful PSCs with respectable efficiencies, it remains a challenge to realize high-efficiency, colorful PSCs through deliberate structural design.

2D patterned nanobowl arrays with a remarkable photonic structure have been previously employed an electron transport layer (ETL) to fabricate efficient PSCs, but the obtained PSCs showed only dark or dark-brown colors, which could be related to the full filling of the nanobowls by the perovskite overlayer. Recently, Limin Qi’s research group in Peking University have developed a novel strategy to prepare colorful PSCs by delicate deposition of a uniform perovskite thin layer into arrayed NBs acting as a structured ETL without jeopardizing their photonic properties. They succeeded in using TiO2 NB arrays as a photonic ETL to integrate with a uniform thin overlayer of CH3NH3PbI3, achieving high-efficiency colorful perovskite solar cells. A new crystalline precursor film based on lead acetate was prepared through a Lewis acid base adduct approach, which allowed for uniform deposition of the precursor thin film onto the inner walls of the TiO2 NBs and subsequent formation of a uniform overlayer of high-quality perovskite crystals.

The perovskite solar cells fabricated using the nanobowl arrays inherited the photonic properties of the periodic structures, showing angle-dependent vivid colors under light illumination (Figure 1). These colorful PSCs exhibited a remarkable photovoltaic performance with a champion efficiency up to 16.94% and an average efficiency of 15.47%, which are higher than those for all the colorful PSCs reported so far. It is expected that the performance of the colorful PSCs based on the nanobowl arrays could be further improved by delicately manipulating the patterned nanoarray structure and optimizing the deposition processes of the perovskite films. This work may open a new avenue toward high-efficiency colorful perovskite solar cells with promising applications including building integrated photovoltaics.

###

This research was funded by the National Natural Science Foundation of China (21673007).

See the article: W. Wang, Y. He, L. Qi, “High-efficiency colorful perovskite solar cells using TiO2 nanobowl arrays as a structured electron transport layer” Sci. China. Mater. (2019) doi: 10.1007/s40843-019-9452-1

https://link.springer.com/article/10.1007%2Fs40843-019-9452-1

Media Contact
Limin Qi
[email protected]

Related Journal Article

http://dx.doi.org/10.1007/s40843-019-9452-1

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Dual-Pathway Synthesis Builds Non-Adjacent Stereocenters

Dual-Pathway Synthesis Builds Non-Adjacent Stereocenters

November 13, 2025
Breakthrough “Ultra-Mild” Sequencing Technique Overcomes Key Limitations in Cancer DNA Methylation Analysis

Breakthrough “Ultra-Mild” Sequencing Technique Overcomes Key Limitations in Cancer DNA Methylation Analysis

November 13, 2025

Groundbreaking High-Precision Measurement of Potential Dynamics Achieved in Reactor-Grade Fusion Plasma

November 13, 2025

Stellar siblings: The Pleiades emerge from a colossal star-forming event

November 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    317 shares
    Share 127 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    209 shares
    Share 84 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    141 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1306 shares
    Share 522 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhancing Teamwork in Healthcare: A Visual Framework

Climate Change Reshapes Global Carbon Sinks

TRIM25 Loss Boosts Cancer Immunotherapy via VISTA

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.