• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

N-heterocyclic phosphines: promising catalysts for transfer hydrogenation

Bioengineer by Bioengineer
November 30, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: @SCIENCE CHINA PRESS

Hydride transfer is a prevailing protocol for reduction of unsaturated compounds, which is traditionally accomplished under the catalysis of transition-metals, particularly those of noble metals. Because of concerns associated with their low abundance, high toxicity and harmful transition-metal residues, considerable research has recently focused on the use of main-group organic counterparts as surrogates for conventional metal hydrides.

Recently, N-heterocyclic phosphines (NHPs) have emerged as a new group of promising catalysts for metal-free reductions. Their excellent hydricity of the P-H bond, which rivals or even exceeds those of many metal-based hydrides, is the result of hyperconjugative interactions between the lone-pair electrons on N atoms and the adjacent sigma*(P-H) orbital, as reflected by the resonance structures of the diazaphospholene skeleton. The umpolung reactivities of phosphines derived in this way stimulated researchers to identify innovative structures with comparable or enhanced hydricities. Significant developments in the past decade have made P-H hydrides an attractive research area in main-group hydrides. Many NHPs (Scheme 1) with diverse structures and reactivities have been developed and used as powerful stoichiometric or catalytic reductants in organic syntheses, such as catalytic reduction of polar unsaturated bonds and the hydroboration of pyridines.

Several exhaustive reviews have previously discussed carbon- and borane-based hydrides in terms of their hydridic reactivities and applications in chemical transformations. However, there have been few summaries of up-to-date synthetic applications of N-heterocyclic phosphines, particularly with regard to recent progress in asymmetric chemistry. This review from Jin-Dong Yang and Jin-Pei Cheng’s group summarized recent progress in studies of the reactivity and synthetic applications of these phosphorus-based hydrides, with the aim of providing practical information to enable exploitation of their synthetically useful chemistry.

The authors outlined significant advances in this area. In the first section, they described experimental methods for quantifying the thermodynamic and kinetic hydricities of NHPs, along with a brief introduction to the NHP catalytic mechanism. The synthetic uses of NHPs as hydridic catalysts, categorized by the identity of the terminal reductants, were summarized (Scheme 2). Where applicable, the use of measured reactivity parameters to rationalize these catalytic reductions was attempted.

Moreover, the reactions developed in the past mainly focused on the hydridic reduction ability of NHPs. On the basis of recent findings that NHPs can also serve as good hydrogen-atom donors and their corresponding phosphinyl radicals are excellent electron donors. Hence, a brief introduction to recent progress in radical reactions of NHPs was also provided. This alternative pathway might provide a potential route to previously inaccessible reactivity in hydridic reduction. Finally, the authors discussed promising future applications of P-H hydrides in various fields.

###

See the article:

Recent Progress in Reactivity Study and Synthetic Application of N-Heterocyclic Phosphorus Hydrides

Jingjing Zhang, Jin-Dong Yang, Jin-Pei Cheng

Natl Sci Rev, 2020, doi: 10.1093/nsr/nwaa253

https://doi.org/10.1093/nsr/nwaa253

Media Contact
Jin-Dong Yang
[email protected]

Related Journal Article

http://dx.doi.org/10.1093/nsr/nwaa253

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Ice Accelerates Iron Dissolution More Than Liquid Water, Study Finds

September 22, 2025
New Tool Enhances Generative AI Models to Accelerate Discovery of Breakthrough Materials

New Tool Enhances Generative AI Models to Accelerate Discovery of Breakthrough Materials

September 22, 2025

New Study Warns Seasonal Freeze–Thaw Cycles Could Cause “Green” Biochar to Release Toxic Metals

September 20, 2025

Gravitino Emerges as a Promising New Candidate for Dark Matter

September 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nasal Staph Affects Mice Mood by Hormone Breakdown

Harmonic Generation in Topological Van der Waals Metamaterials

Slc7a7 Enables Macrophage Glutaminolysis to Combat Atherosclerosis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.