• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, December 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

‘Mystical’ psychedelic compound found in normal brains

Bioengineer by Bioengineer
June 27, 2019
in Chemistry
Reading Time: 3 mins read
1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A study in rats has revealed the presence of naturally occurring DMT, an increasingly popular hallucinogen

In the past few years, thrill-seekers from Hollywood, Silicon Valley and beyond have been travelling to South America to take part in so-called Ayahuasca retreats. Their goal: to partake in a brewed concoction made from a vine plant Banisteriopsis caapi, traditionally used by indigenous people for sacred religious ceremonies. Drinkers of Ayahuasca experience short-term hallucinogenic episodes many describe as life-changing.

The active ingredient responsible for these psychedelic visions is a molecule called dimethyltryptamine (DMT). For the first time, a team led by Michigan Medicine has discovered the widespread presence of naturally-occurring DMT in the mammalian brain. The finding is the first step toward studying DMT– and figuring out its role — within the brains of humans.

“DMT is not just in plants, but also can be detected in mammals,” says Jimo Borjigin, Ph.D., of the Department of Molecular and Integrative Physiology. Her interest in DMT came about accidentally. Before studying the psychedelic, her research focused on melatonin production in the pineal gland.

In the seventeenth century, the philosopher Rene Descartes claimed that the pineal gland, a small pinecone-shaped organ located deep in the center of the brain, was the seat of the soul. Since its discovery, the pineal gland, known by some as the third eye, has been shrouded in mystery. Scientists now know it controls the production of melatonin, playing an important role in modulating circadian rhythms, or the body’s internal clock. However, an online search for notes to include in a course she was teaching opened Borjigin’s eyes to a thriving community still convinced of the pineal gland’s mystical power.

The core idea seems to come from a documentary featuring the work of researcher Rick Strassman, Ph.D. with the University of New Mexico School of Medicine. In the mid-1990s, he conducted an experiment in which human subjects were given DMT by IV injection and interviewed after its effects wore off. In a documentary about the experiment, Strassman claims that he believed the pineal gland makes and secretes DMT.

“I said to myself, ‘wait, I’ve worked on the pineal gland for years and have never heard of this,'” she said. She contacted Strassman, requesting the source of his statement. When Strassman admitted that it was just a hypothesis, Borjigin suggested they work together to test it. “I thought if DMT is an endogenous monoamine, it should be very easy to detect using a fluorescence detector.”

Using a process in which microdialysis tubing is inserted into a rat brain through the pineal gland, the researchers collected a sample that was analyzed for — and confirmed — the presence of DMT. That experiment resulted in a paper published in 2013.

However, Borjigin was not satisfied. Next, she sought to discover how and where DMT was synthesized. Her graduate student, Jon Dean, lead author of the paper, set up an experiment using a process called in situ hybridization, which uses a labeled complementary strand of DNA to localize a specific RNA sequence in a tissue section.

“With this technique, we found brain neurons with the two enzymes required to make DMT,” says Borjigin. And they were not just in the pineal gland.

“They are also found in other parts of the brain, including the neocortex and hippocampus that are important for higher-order brain functions including learning and memory.”

The results are published in the journal Scientific Reports.

Her team’s work has also revealed that the levels of DMT increase in some rats experiencing cardiac arrest. A paper published in 2018 by researchers in the U.K. purported that DMT simulates the near death experience, wherein people report the sensation of transcending their bodies and entering another realm. Borjigin hopes to probe further to discover the function of naturally occurring levels of DMT in the brain — and what if any role it plays in normal brain functions.

“We don’t know what it’s doing in the brain. All we’re saying is we discovered the neurons that make this chemical in the brain, and they do so at levels similar to other monoamine neurotransmitters.”

###

Media Contact
Kelly Malcom
[email protected]
http://dx.doi.org/10.1038/s41598-019-45812-w

Tags: BiochemistryBiologyCircadian RhythmDrugsMental HealthneurobiologyNeurochemistryPerception/AwarenessPhilosophy/ReligionSocial/Behavioral Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

December 11, 2025
Photoswitchable Olefins Enable Controlled Polymerization

Photoswitchable Olefins Enable Controlled Polymerization

December 11, 2025

Cation Hydration Entropy Controls Chloride Ion Diffusion

December 10, 2025

Iridium Catalysis Enables Piperidine Synthesis from Pyridines

December 3, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    53 shares
    Share 21 Tweet 13
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    72 shares
    Share 29 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Acculturation and Support Influence South Asian Girls’ Activity

Nurses’ Insights on Mentorship Programs in Riyadh

Political Factors Shaping Cervical Cancer Control in Peru

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.