• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, January 9, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Mystery of texture of Guinness beer: inclination angle of a pint glass is key to solution

Bioengineer by Bioengineer
May 7, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Bubble cascade in beer is found to be analogous to roll waves observed in water sliding downhill on a rainy day

IMAGE

Credit: Osaka University

Guinness beer, a dark stout beer, is pressurized with nitrogen gas. When poured Guinness beer into a pint glass, small-diameter bubbles (only 1/10 the size of those in carbonated drinks such as soda and carbonated water) disperse throughout the entire glass and the texture motion of the bubble swarm moves downwards.

Although some models to explain how the downward movement of a bubble swarm as waves are caused in Guinness beer have been proposed, the mechanism underlying the texture-formation was an open problem.

Because the opaque and dark-colored Guinness beer obstructs the physical observation in a glass and huge computation using supercomputers is necessary to conduct numerical simulation of flows including a vast number of small bubbles in the beer, the team of researchers led by Tomoaki Watamura produced transparent “pseudo-Guinness fluid” by using light particles and tap water. They filmed the movement of liquid with a high-speed video camera applying laser-induced-fluorescence method in order to accurately measure the movement of fluid. In addition, using molecular tags, they visualized the irregular movement of the fluid.

With these methods, the team poured pseudo-Guinness fluid in an inclined container to observe how the texture formed. The texture-formation appeared only in the region of about 1 mm away from the inclined wall and didn’t appear in the vertical wall vicinity.

They also observed a clear-fluid (bubble-free) film flow down along the inclined wall in the inclined wall vicinity, capturing velocity and thickness of bubble-free film flowing downward. While the texture appeared when the glass inclination angles were small, it did not when they were large, demonstrating that the texture-formation in a glass of Guinness beer was caused by the roll-wave instability of the gravity current.

Lead author Watamura says, “There are a large number of small objects in nature, such as fine rock particles transported from rivers to the sea and microorganisms living in lakes and ponds. Comprehending and regulating the movement of small objects is important in various industrial processes as well. Our research results will be useful in understanding and controlling flows of bubbles and particles used in industrial processes as well as protein crystallization and cell cultivation used in the field of life science.”

###

Media Contact
Saori Obayashi
[email protected]

Original Source

https://resou.osaka-u.ac.jp/en/research/2019/20190411_1

Related Journal Article

http://dx.doi.org/10.1038/s41598-019-42094-0

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Advancing Alkene Chemistry: Homologative Difunctionalization Breakthrough

January 8, 2026
Biocompatible Ligand Enables Safe In-Cell Protein Arylation

Biocompatible Ligand Enables Safe In-Cell Protein Arylation

January 8, 2026

Monovalent Pseudo-Natural Products Boost IDO1 Degradation

January 7, 2026

Catalytic Enantioselective [1,2]-Wittig Rearrangement Breakthrough

January 7, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    144 shares
    Share 58 Tweet 36
  • Impact of Vegan Diet and Resistance Exercise on Muscle Volume

    46 shares
    Share 18 Tweet 12
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    45 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Cholinesterase Inhibitors Target Alzheimer’s with Thiadiazoles

Unlocking Heterosis in Pigs via Single-Cell Transcriptomics

Therapy Boosts Neurodevelopment in Preterm Infants

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.