• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Muscle growth finding may assist with cancer treatment

Bioengineer by Bioengineer
June 14, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Monash University's Biomedicine Discovery Institute (BDI) researchers have collaboratively developed a therapeutic approach that dramatically promotes the growth of muscle mass, which could potentially prevent muscle wasting in diseases including muscular dystrophy and cancer.

The approach, jointly developed with Baker Heart and Diabetes Institute scientists, combines – for the first time – molecules that inhibit three proteins which in turn repress muscle growth.

Published this week in the journal Proceedings of the National Academy of Sciences, the scientists found that inhibiting activin A, activin B and myostatin resulted in skeletal muscle mass increase by as much as 150 per cent in preclinical models.

Myostatin has long been recognised as the body's major negative regulator of skeletal muscle mass, helping to maintain muscle homeostasis in the body, but creating molecules to target all three related proteins together was a novel approach.

"As a result of the study we can now more precisely regulate – and increase – muscle mass in the setting of disease," co-lead author from Monash BDI, Dr Craig Harrison, said.

Dr Harrison said the study, the culmination of many years of research with the Baker Institute's Dr Paul Gregorevic, was aimed mostly at developing a way of preventing muscle loss in the wasting condition cachexia, in cancer.

Dr Harrison said cachexia, observed in the end stages of cancer, was thought to contribute or directly cause 20 to 30 per cent of all cancer-related deaths. Palliative care is currently the only treatment for cancer cachexia. The condition is also seen in other diseases including diabetes, AIDS, and in heart and kidney failure.

The paper showed that the combination treatment could prevent muscle wasting in a cancer cachexia model as well as in muscular dystrophy. It could also potentially be used after clinical development in healthy and in ageing individuals undergoing a slow wasting of muscles, Dr Harrison said.

Activins and myostatin belong to the transforming growth factor-β (TGF-β) family of proteins, which both researchers have been investigating for a number of years.

Further pre-clinical research is proceeding.

The findings were recently corroborated by a similar study by US scientists, although those experiments did not target activin B and did not demonstrate as great an effect, Dr Harrison said.

###

The research was supported by the Australian National Health and Medical Research Council.

About the Monash Biomedicine Discovery Institute

Committed to making the discoveries that will relieve the future burden of disease, the newly established Monash Biomedicine Discovery Institute at Monash University brings together more than 120 internationally-renowned research teams. Our researchers are supported by world-class technology and infrastructure, and partner with industry, clinicians and researchers internationally to enhance lives through discovery.

Media Contact

Ruth Schneider
[email protected]
61-040-868-1293
@MonashUni

http://www.monash.edu.au

http://dx.doi.org/10.1073/pnas.1620013114

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

USC Scientists Secure $8 Million NIH Grant to Develop Innovative Alzheimer’s Drug

September 23, 2025

Exploring Factors Behind Decline of Hispanic Mortality Advantage

September 23, 2025

Provider Misperceptions, Rather Than Knowledge or Profit Motives, Fuel Inappropriate Antibiotic Overuse for Childhood Diarrhea in India

September 23, 2025

New Guidelines for Anemia Treatment in Kidney Disease

September 23, 2025
Please login to join discussion

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

USC Scientists Secure $8 Million NIH Grant to Develop Innovative Alzheimer’s Drug

Exploring Factors Behind Decline of Hispanic Mortality Advantage

Provider Misperceptions, Rather Than Knowledge or Profit Motives, Fuel Inappropriate Antibiotic Overuse for Childhood Diarrhea in India

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.