• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Multiple sclerosis: Myelin may be detrimental to nerve fibres

Bioengineer by Bioengineer
June 30, 2023
in Health
Reading Time: 3 mins read
0
Cross-sectional electron micrographs of individual nerve fibers in MS brain biopsies
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Multiple sclerosis (MS) is a serious neurological disease that usually causes permanent disability. Approximately 2.9 million people are affected worldwide, 240,000 in Germany alone. The exact cause of the disease is not yet clear, but a central feature is a loss of the insulating protective layer of axons – the neuronal connections in the central nervous system – which is triggered by autoimmune processes. The coating of the axons, known as myelin, is formed by highly specialised glial cells (i.e. oligodendrocytes) and enables the rapid transmission of electrical nerve impulses. To date, it has been assumed that in MS oligodendrocytes and myelin are degraded by immune cells and that the then vulnerable axons suffer irreversible damage as a result of further local inflammatory processes. The loss of axons plays a decisive role in the severity of MS in patients and in the course of the disease.

Cross-sectional electron micrographs of individual nerve fibers in MS brain biopsies

Credit: Photo: Leipzig University

Multiple sclerosis (MS) is a serious neurological disease that usually causes permanent disability. Approximately 2.9 million people are affected worldwide, 240,000 in Germany alone. The exact cause of the disease is not yet clear, but a central feature is a loss of the insulating protective layer of axons – the neuronal connections in the central nervous system – which is triggered by autoimmune processes. The coating of the axons, known as myelin, is formed by highly specialised glial cells (i.e. oligodendrocytes) and enables the rapid transmission of electrical nerve impulses. To date, it has been assumed that in MS oligodendrocytes and myelin are degraded by immune cells and that the then vulnerable axons suffer irreversible damage as a result of further local inflammatory processes. The loss of axons plays a decisive role in the severity of MS in patients and in the course of the disease.

Recent research conducted by a team of scientists from Leipzig University and Max Planck Institute for Multidisciplinary Sciences in Göttingen suggests that the understanding of the disease now needs to change. In the current study, the research groups were able to show that myelin, which was previously viewed as a solely protective structure, can actually threaten the survival of the axons. This is the case, for example, when myelin sheaths have been attacked by immune cells, but continue to surround the axons and thus isolate them from the environment. Oligodendrocytes are not only responsible for the formation of myelin. They also perform important functions that support the energy metabolism of the axons. Myelinated axons, in particular, are highly dependent on metabolic support because they have little access to nutrients on their own. Support of myelinated axons through a myelin sheath requires that the architecture of myelin be intact, including the tight communication channels between the oligodendrocytes and axons.

“When oligodendrocytes are exposed to an acute inflammatory environment, they may lose their ability to support the axons, and myelin becomes a threat to the survival of the axons,” says Professor Klaus-Armin Nave from the Max Planck Institute for Multidisciplinary Sciences in Göttingen, Germany, describing the team’s research hypothesis that was formulated at the outset. To test their hypothesis, the researchers examined tissue samples from patients with multiple sclerosis, as well as various mouse models of this disease in order to experimentally simulate the autoimmune attack on myelin. For the first time, the researchers were able to demonstrate by electron microscopy in the tissue samples of the patients that irreversible damage almost always occurs in the axons that are still coated with myelin (see figure). Conversely, using genetically modified mouse models, the researchers were able to show that “naked” axons in an acute inflammatory region of the central nervous system are better protected from degeneration. 

“By challenging the prevailing image of myelin as a solely protective structure, we can gain a deeper understanding of the disease and potentially develop new treatment strategies that will maintain the functionality of the axons,” explains Professor Ruth Stassart from the Paul Flechsig Institute – Center for Neuropathology and Brain Research, Institute of Neuropathology at Leipzig University Hospital. “Instead of preserving the damaged myelin, it might actually be therapeutically better to promote rapid degradation of damaged myelin and support the regeneration of functional myelin,” adds Dr. Robert Fledrich, a researcher in the Institute of Anatomy at Leipzig University.

Original publication in Nature Neuroscience: Myelin insulation as a risk factor for axonal degeneration in autoimmune demyelinating disease. DOI: 10.1038/s41593-023-01366-9



Journal

Nature Neuroscience

DOI

10.1038/s41593-023-01366-9

Method of Research

Experimental study

Article Title

Myelin insulation as a risk factor for axonal degeneration in autoimmune demyelinating disease

Article Publication Date

29-Jun-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Exploring Language Switching in Multilingual Autistic Adults

October 19, 2025

Effective Nursing Strategies for Cardiovascular Disease Prevention

October 19, 2025

Serum Proteomics: Uncovering COVID-19 Organ Morbidity Biomarkers

October 19, 2025

Diabetes Management Linked to Social Vulnerability Factors

October 19, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1261 shares
    Share 504 Tweet 315
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    289 shares
    Share 116 Tweet 72
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    123 shares
    Share 49 Tweet 31
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    103 shares
    Share 41 Tweet 26

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Restoring Kraak Porcelain Patterns with Generative AI

Sex Differences in Anxiety and Depression Modulation

Exploring Language Switching in Multilingual Autistic Adults

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.