• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, July 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Multi-material multi-photon 3D laser micro- and nanoprinting

Bioengineer by Bioengineer
June 28, 2021
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: by Liang Yang, Frederik Mayer, Uwe H. F. Bunz, Eva Blasco and Martin Wegener

Multi-photon approaches provide printing rates of up to about ten million voxels per second. And, multi-photon-based 3D approaches structure matter with a resolution approaching sub-micrometer and nanometer feature sizes. Such spatial resolution is crucial for many applications in photonics and electronics and is inaccessible to most other 3D additive manufacturing approaches. However, the vast majority of 3D printed objects and devices made along these lines has been composed of only a single polymeric material. Multi-material architectures are much less investigated than single-material architectures, yet, most real-life systems (microscopic and macroscopic, biological and artificial) contain a large number of different materials with vastly dissimilar optical, mechanical, thermal, and electronic properties.

In a new paper published in Light: Advanced Manufacturing, a team of scientists, led by Professor Martin Wegener from Institute of Applied Physics, Karlsruhe Institute of Technology, Germany and co-workers have reviewed approaches and achievements on multi-material multi-photon micro/nano-printing. Existing materials that might serve as a working set of “primary materials” are concluded first. In the second step, processing dissimilar primary materials within 3D printed structures using a single machine tool is discussed. Corresponding literature are divided into two avenues.

In the first avenue, different photoresists – the counterparts of the colored inks – are combined to manufacture a targeted multi-material 3D structure. So far, this combination has been accomplished by intermediate manual processing steps, but automated multi-photon multi-material 3D printing systems are rapidly developing.

In the second avenue, a single photoresist delivers 3D printed material with different properties. There is no direct analogue in graphical 2D printing. The underlying idea is to impose a stimulus during the 3D printing process of each voxel, influencing the photo-reaction of the ink, such, that the emerging material properties can be varied locally and deterministically in 3D.

“Nature proceeds quite similarly. It achieves a vast variety of different effective material properties in animals and plants by architecting on a micrometer and nanometer scale by using only a limited number of building blocks, based on polysaccharides, proteins, and minerals.16 Printing tailored 3D microstructures results in artificial composites, with effective optical, mechanical, thermal, and electronic properties that can be qualitatively dramatically distinct from those of the constituents. As for dithering in 2D, it is key that the characteristic feature sizes are sufficiently small such that the observer does not notice them and rather experiences an effective homogeneous continuum” they added.

“Concerning primary materials, the field still shows shortcomings concerning electrically conductive, semiconducting, metallic, and stimuli-responsive ingredients. ” the scientists forecast.

###

Media Contact
Liang Yang
[email protected]

Related Journal Article

http://dx.doi.org/10.37188/lam.2021.017

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Sunlight Transforms the Chemical Breakdown of Discarded Face Masks

July 31, 2025
AMS Science Preview: Record-Breaking Lightning, Declining Hurricanes, and Advances in Fire Forecasting

AMS Science Preview: Record-Breaking Lightning, Declining Hurricanes, and Advances in Fire Forecasting

July 31, 2025

Smart Catalyst Paves the Way for Sustainable Chemistry

July 31, 2025

Scientists Uncover Why Optimal Transport Theory Excels in Generative Models

July 31, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    37 shares
    Share 15 Tweet 9
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Safeguarding Your Heart: Essential Insights for Heart Health

Decoding the Mechanisms Behind Chemotherapy Resistance in Bladder Cancer

Sunlight Transforms the Chemical Breakdown of Discarded Face Masks

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.