• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

MU study shows how brucellosis — which can jump from animals to humans — impacts the brain

Bioengineer by Bioengineer
August 29, 2023
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

COLUMBIA, Mo. – Brucellosis is a disease, caused by the members of bacterial Brucella family, that mainly infects cattle, goats and sheep, leading to pregnancy loss, which has caused billions of dollars in economic losses for livestock producers worldwide. The disease can also jump from animals to humans, mainly through consumption of unpasteurized dairy products or inhaling the spores from the tissues of infected animals.

bacteria

Credit: University of Missouri

COLUMBIA, Mo. – Brucellosis is a disease, caused by the members of bacterial Brucella family, that mainly infects cattle, goats and sheep, leading to pregnancy loss, which has caused billions of dollars in economic losses for livestock producers worldwide. The disease can also jump from animals to humans, mainly through consumption of unpasteurized dairy products or inhaling the spores from the tissues of infected animals.

While the disease can cause arthritis, inflammation of the heart and flu-like symptoms in humans, the bacteria can also enter the brain and cause neurobrucellosis, which can lead to long-term neurological complications, headaches, nausea, disorientation, swelling of the brain and sometimes death. Now, a new study at the University of Missouri has highlighted the protective power of both innate lymphoid cells and specific signaling proteins, known as interferons, in reducing the harmful neurological effects of Brucella.

The study, which was funded by the National Institutes of Health and used a mouse model, could potentially lead to future improvements in how the disease is both diagnosed and treated.

“While Missouri has been considered ‘Brucellosis free’ since 2004 and the bacteria has almost been completely eradicated in both humans and domestic animals nationwide, there are still areas where it persists like within bison in Yellowstone National Park,” said Charles Moley, a veterinarian and current doctoral student in the MU College of Veterinary Medicine (CVM) who led the study in the lab of Jerod Skyberg, an associate professor in the CVM. “Worldwide, it is one of the most common bacterial infections that jumps from animals to humans, and there are estimates it impacts more than 10 million people each year, mainly in the Middle East and Mediterranean regions.”

Moley is a veterinary scientist in the Comparative Medicine Program, and his research can potentially inform the work of other researchers by better understanding how the disease impacts the brain. Given the new knowledge of the critical protective role played by innate lymphoid cells and interferons, the study could lead to more targeted therapy interventions for humans worldwide suffering from neurobrucellosis or more targeted diagnostic approaches for identifying the disease before neurological symptoms appear or worsen.

“The work being done in MU’s Laboratory for Infectious Disease Research improves the health of both animals and humans, which is gratifying,” Moley said. “When I was recently visiting my grandparents in Arizona, I heard from a friend of my grandpa, who said his dad, who was a farmer, had died in the 1950s from brucellosis, and was thankful I was researching this topic. Stories like that motivate me, and I want to help.”

“Innate lymphoid cells and interferons limit neurologic and articular complications of Brucellosis” was recently published in The American Journal of Pathology.

-30-



Journal

American Journal Of Pathology

DOI

10.1016/j.ajpath.2023.05.006

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Innate lymphoid cells and interferons limit neurologic and articular complications of Brucellosis

Article Publication Date

21-Aug-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Link Between Minor and Visual Hallucinations in Parkinson’s

Link Between Minor and Visual Hallucinations in Parkinson’s

August 18, 2025
SARS-CoV-2 Survival and Spread in Aerosol Chamber

SARS-CoV-2 Survival and Spread in Aerosol Chamber

August 18, 2025

How One Researcher Is Developing Solutions to Protect Pets from Accidental Cocaine Ingestion

August 18, 2025

Lung Cell Fate Dynamics During Influenza Infection

August 18, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Link Between Minor and Visual Hallucinations in Parkinson’s

SARS-CoV-2 Survival and Spread in Aerosol Chamber

Enhanced Fe-Co/NF Electrode Enables Sensitive Nitrite Detection

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.