• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

MU study identifies mutations specific to Omicron variant

Bioengineer by Bioengineer
January 21, 2022
in Biology
Reading Time: 3 mins read
0
Kamlendra Singh
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

COLUMBIA, Mo. — While the Omicron variant continues to infect people around the world, researchers at the University of Missouri have identified the highly prevalent, specific mutations that are causing the Omicron variant’s high rate of infection.

Kamlendra Singh

Credit: MU College of Veterinary Medicine

COLUMBIA, Mo. — While the Omicron variant continues to infect people around the world, researchers at the University of Missouri have identified the highly prevalent, specific mutations that are causing the Omicron variant’s high rate of infection.

The findings help explain how the new variant can escape pre-existing antibodies present in the human body, either from vaccination or naturally from a recent COVID-19 infection.

“We know that viruses evolve over time and acquire mutations, so when we first heard of the new Omicron variant, we wanted to identify the mutations specific to this variant,” said Kamlendra Singh, a professor in the MU College of Veterinary Medicine, assistant director of the MU Molecular Interactions Core and Bond Life Sciences Center investigator.

Singh collaborated with Saathvik Kannan, a freshman at Hickman High School in Columbia, Missouri, and Austin Spratt, an undergraduate student at MU, and Sid Byrareddy of the University of Nebraska Medical Center, to analyze protein sequences of Omicron samples from around the world, including South Africa, Botswana and the United States. The team identified 46 highly prevalent mutations specific to Omicron, including several located in the region of the virus’ spike protein where antibodies bind to the virus in order to prevent infection.

“The purpose of antibodies is to recognize the virus and stop the binding, which prevents infection,” Singh said. “However, we found many of the mutations in the Omicron variant are located right where the antibodies are supposed to bind, so we are showing how the virus continues to evolve in a way that it can potentially escape or evade the existing antibodies, and therefore continue to infect so many people.”

As antiviral treatments for individuals infected with COVID-19 continue to be developed, Singh explained that having a better understanding of how the virus is evolving will help ensure future antiviral treatments will be targeted toward the specific parts of the virus to produce the most effective outcomes.

In a recent trip to his native India, Singh met with Manish Sisodia, the deputy chief minister of Delhi, to discuss the launch of CoroQuil-Zn, a supplement that can be taken while infected with COVID-19 to help reduce one’s viral load. The supplement, which Singh helped to develop, is now being used by patients in Tamil Nadu, a state in India. The manufacturer will soon seek FDA approval for its distribution in the United States.

“The first step toward solving a problem is getting a better understanding of the specific problem in the first place,” Singh said. “It feels good to be contributing to research that is helping out with the pandemic situation, which has obviously been affecting people all over the world.”

“Omicron SARS-CoV-2 variant: Unique features and their impact on pre-existing antibodies” was recently published in Journal of Autoimmunity. Funding for the study was provided by the Bond Life Sciences Center, the National Institute of Allergy and Infectious Diseases and the National Strategic Research Institute at the University of Nebraska. Siddappa Byrareddy of the University of Nebraska Medical Center, Hitendra Chand of Florida International University and Kalicharan Sharma of Delhi Pharmaceutical Sciences and Research University were co-authors on the study.

-30-



Journal

Journal of Autoimmunity

DOI

10.1016/j.jaut.2021.102779

Subject of Research

People

Article Title

Omicron SARS-CoV-2 variant: Unique features and their impact on pre-existing antibodies

Article Publication Date

1-Jan-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Combined Impact of Weather and Air Pollution on Influenza Trends in Huaian, China

Combined Impact of Weather and Air Pollution on Influenza Trends in Huaian, China

September 9, 2025
blank

Multi-Epitope Antigen Advances Toxoplasmosis Diagnosis

September 9, 2025

Hsa_circ_0077007: New Hope for Colorectal Cancer

September 9, 2025

Meet the Finalists: 2025 Blavatnik National Awards for Young Scientists Revealed

September 9, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • Physicists Develop Visible Time Crystal for the First Time

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Managing Female Cancer Side Effects: Forum Insights

Novel CNN Identifies P-glycoprotein Drug Ligands

Developing a High-Density, Top-Tier Tungsten Single-Atom Catalyst

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.