• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, December 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

MSU researchers lead team that observes exotic radioactive decay process

Bioengineer by Bioengineer
September 26, 2019
in Chemistry
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: National Superconducting Cyclotron Laboratory

EAST LANSING, Mich. – Researchers from the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University (MSU) and TRIUMF (Canada’s national particle accelerator) have observed a rare nuclear decay. Namely, the team measured low-kinetic-energy protons emitted after the beta decay of a neutron-rich nucleus beryllium-11. The research team presented their results in an article recently published in Physical Review Letters.

An atomic nucleus with many more neutrons than protons is neutron-rich and unstable. It will get rid of excess neutrons to become stable through the beta-decay process. Beta decay is common in atomic nuclei. In this process, the nucleus emits a beta particle and transforms a neutron into a proton, or a proton into a neutron.

Less common is proton emission following beta decay of a neutron-rich nucleus. Beta-delayed proton emission, observed more than 40 years ago, typically occurs in proton-rich nuclei. For neutron-laden nuclei, it defies laws of energy to emit protons after beta decay unless the neutrons are loosely bound and essentially free. This condition may be fulfilled in so-called halo nuclei, where one or two neutrons orbit the remaining core at a considerable distance.

“There are few neutron-rich nuclei for which the elusive proton emission following beta decay can happen,” said Yassid Ayyad, detector systems physicist at NSCL, who is part of the research team that observed the rare decay. “Beryllium-11 is the most promising one. It becomes beryllium-10 after beta decay to boron-11 and the subsequent proton emission. The exotic radioactive decay we observed represents a new challenge for the understanding of exotic nuclei, in particular for halo nuclei.”

According to experiments at the Isotope mass Separator On-Line (ISOLDE) facility at the European Organization for Nuclear Research (CERN) and the Vienna Environmental Research Accelerator (VERA) facility in Vienna, the probability of the beta-delayed proton emission in a neutron-rich nucleus is unexpectedly high. Researchers did not directly observe protons coming from the beryllium-11 decay. This has led to speculations involving an extremely exotic decay. Instead of emitting a proton, the halo neutron would be transformed into an undetectable dark-matter particle. Dark matter is an unseen hypothetical substance. It may consist of exotic particles that do not interact with normal matter or light but still exert a gravitational pull.

Ayyad emphasized the significance of this speculation. “This scenario, if confirmed, would represent the first indirect observation of dark matter,” he said.

The ISOLDE/VERA team suggested another, less exotic, explanation of the high decay rate. It involves a narrow resonance in boron-11 close to the energy threshold where the nucleus is allowed to emit a proton. This scenario is reminiscent of the discovery of the Hoyle state, an excited state of carbon-12 that is very close to the alpha-particle separation energy, the energy threshold about which the nucleus can emit an alpha particle (helium-4). Astronomer Fred Hoyle first proposed this state in 1954 to explain the production of carbon in stars.

“One of the most exciting outcomes of this work is that the proton emission proceeds through a highly-excited, narrow resonance state in the boron-11 nucleus,” Ayyad said, thus confirming the “Hoyle-like” scenario involving the threshold resonance.

The team used the Active Target Time Projection Chamber (AT-TPC) developed at NSCL to perform the experiment. This gas-filled detector has a very large detection probability and provides the energy of the particle with high accuracy and precision. The detector delivers a three-dimensional image of the charged particles emitted in the beryllium-11 decay, including information about their energy. The TRIUMF Isotope Separator and Accelerator facility delivered a beryllium-11 beam. Experimenters implanted the beam in the middle of the detector to capture its decay modes. The beryllium-11 decayed into beryllium-10 and a proton, with a narrow energy distribution only 0.0013 percent of the time. The beryllium-10, together with the decay proton, is thought to form a boron-11 nucleus with high-excitation energy that exists during a brief period of time.

This research is of interest for future studies. The AT-TPC and the intense rare-isotope beams provided by the Facility for Rare Isotope Beams (FRIB) at MSU will make it feasible to characterize this new resonance and find other, more exotic particle emitters.

###

The National Science Foundation’s National Superconducting Cyclotron Laboratory is a center for nuclear and accelerator science research and education. It is the nation’s premier scientific user facility dedicated to the production and study of rare isotopes.

MSU is establishing FRIB as a new scientific user facility for the Office of Nuclear Physics in the U.S. Department of Energy Office of Science. Under construction on campus and operated by MSU, FRIB will enable scientists to make discoveries about the properties of rare isotopes in order to better understand the physics of nuclei, nuclear astrophysics, fundamental interactions, and applications for society, including in medicine, homeland security and industry.

Media Contact
Karen King
[email protected]

Related Journal Article

http://dx.doi.org/10.1103/PhysRevLett.123.082501

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesNuclear Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

December 19, 2025
Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

December 11, 2025

Photoswitchable Olefins Enable Controlled Polymerization

December 11, 2025

Cation Hydration Entropy Controls Chloride Ion Diffusion

December 10, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

MEI1 Variants Linked to Female Infertility and Embryo Issues

Exploring Acute Care Nurses’ Shift Handoff Experiences

Impact of Mental and Somatic Disorders on Hip Surgery Reoperations

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.