• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

MRI tool watches how electrical stimulation could cure digestive disorders

Bioengineer by Bioengineer
October 24, 2018
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: Purdue University/Erin Easterling

WEST LAFAYETTE, Ind. — More than 60 million people in the U.S. suffer from disorders in the gastrointestinal tract that could be cured by electrical stimulation, but scientists don't fully understand the therapy's effects on a critical organ: the stomach.

Purdue University researchers used an MRI to show a play-by-play of how sending an electric impulse to the vagus nerve successfully corrects stomach complications. The technique paves the way for more precise treatment that drugs and dietary changes have not achieved.

"Eventually, by asking a patient to undergo multiple MRI scans with different electrical stimulation settings, we could figure out the best stimulation setting for alleviating that particular patient's symptoms," said Kun-Han "Tom" Lu, a Ph.D. student in electrical and computer engineering.

The work, which is published as the cover of the journal Neurogastroenterology and Motility in its October 2018 issue, aligns with Purdue's Giant Leaps celebration, acknowledging the university's global advancements made in health, longevity and quality of life as part of Purdue's 150th anniversary. This is one of the four themes of the yearlong celebration's Ideas Festival, designed to showcase Purdue as an intellectual center solving real-world issues.

Digestive disorders create a medical burden of billions of dollars every year.

One important indicator of a digestive disorder is the rate at which the stomach empties of food, called "gastric emptying," into the small intestine for the absorption of nutrients. Slow gastric emptying in the disorder gastroparesis, for example, means that stomach muscles aren't moving properly.

Stimulating the vagus nerve would allow doctors to control how fast the stomach empties, effectively curing gastroparesis.

"Some stimulation protocols for the stomach in humans already have FDA approval, but they've proved only partially effective," said Terry Powley, Purdue's Distinguished Professor of Neuroscience and the director of the SPARC (Stimulating Peripheral Activity to Relieve Conditions) project, an initiative of the National Institutes of Health to map out the stomach's neural circuitry.

As part of the SPARC project, Purdue researchers proposed using MRIs in small animals to get a better view of the effects of vagus nerve stimulation on the stomach.

"MRIs are non-invasive, show tissue contrast well and make it easier to repeat an experiment for verification," Lu said. A YouTube video is available at https://youtu.be/ewsx0g2suSE.

Lu stimulated the vagus nerve to control the pyloric sphincter in rats, the valve that controls food leaving the stomach and entering the small intestine. He then created 3D reconstructions of MRI images over time. The images showed that stimulation relaxed the pyloric sphincter, speeding up gastric emptying to potentially correct delayed emptying in the case of gastroparesis, or other kinds of gastrointestinal malfunction.

"This method provides the physiological information for understanding the impacts of any treatment so that it can be fine-tuned for a specific organ or a specific disorder," said Zhongming Liu, assistant professor of biomedical engineering and electrical and computer engineering.

The researchers plan to push the technology to retrieve even more information about gastric physiology and conduct their own tests of different treatments on gastric disorders.

###

The work was supported in part by SPARC (grant 1OT2TR001965) and Purdue University.

ABSTRACT

Vagus nerve stimulation promotes gastric emptying by increasing pyloric opening measured with magnetic resonance imaging

K.?H. Lu J. Cao S. Oleson M. P. Ward R. J. Phillips T. L. Powley, Z. Liu

Purdue University, West Lafayette, IN, USA

doi: 10.1111/nmo.13380

Background

Vagus nerve stimulation (VNS) is an emerging electroceutical therapy for remedying gastric disorders that are poorly managed by pharmacological treatments and/or dietary changes. Such therapy seems promising as the vagovagal neurocircuitry modulates the enteric nervous system to influence gastric functions.

Methods

Here, the modulatory effects of left cervical VNS on gastric emptying in rats were quantified using a (i) feeding protocol in which the animal voluntarily consumed a postfast, gadolinium-labeled meal and (ii) a non-invasive imaging method to measure antral motility, pyloric activity and gastric emptying based on contrast-enhanced magnetic resonance imaging (MRI) and computer-assisted image processing pipelines.

Key Results

Vagus nerve stimulation significantly accelerated gastric emptying (sham vs VNS: 29.1% ± 1.5% vs 40.7% ± 3.9% of meal emptied per 4 hours), caused a greater relaxation of the pyloric sphincter (sham vs VNS: 1.5 ± 0.1 vs 2.6 ± 0.4 mm2 cross-sectional area of lumen), and increased antral contraction amplitude (sham vs VNS: 23.3% ± 3.0% vs 32.5% ± 3.0% occlusion), peristaltic velocity (sham vs VNS: 0.50 ± 0.02 vs 0.67 ± 0.03 mm s?1), but not its contraction frequency (sham vs VNS: 6.1 ± 0.2 vs 6.4 ± 0.2 contractions per minute, P = .22). The degree to which VNS relaxed the pylorus was positively correlated with gastric emptying rate (r = .5887, P

Conclusions & Inferences

The MRI protocol employed in this study is expected to enable advanced preclinical studies to understand stomach pathophysiology and its therapeutics. Results from this study suggest an electroceutical treatment approach for gastric emptying disorders using cervical VNS to control the degree of pyloric sphincter relaxation.

Media Contact

Kayla Wiles
[email protected]
765-494-2432
@PurdueUnivNews

http://www.purdue.edu/

Original Source

https://www.purdue.edu/newsroom/releases/2018/Q4/mri-tool-watches-how-electrical-stimulation-could-cure-digestive-disorders.html http://dx.doi.org/10.1111/nmo.13380

Share12Tweet7Share2ShareShareShare1

Related Posts

STING Agonists Induce Monocyte Death Through Multiple Pathways

October 31, 2025
Bayesian Sequential Palpation Enhances Bimodal Tactile Tomography for Intracavitary Microstructure Profiling and Segmentation

Bayesian Sequential Palpation Enhances Bimodal Tactile Tomography for Intracavitary Microstructure Profiling and Segmentation

October 31, 2025

Early Body Composition in Very Preterm Infants Fed High-Volume Human Milk

October 31, 2025

Optimizing Harm Reduction in Quebec Youth Cannabis Use

October 31, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1293 shares
    Share 516 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    202 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

STING Agonists Induce Monocyte Death Through Multiple Pathways

Concentration-Controlled Doping Converts P-Type Polymer into Its N-Type Equivalent

Inside the Nuclear Pore of Arabidopsis thaliana

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.