• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Move over carbon, the nanotube family just got bigger

Bioengineer by Bioengineer
October 14, 2023
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Tokyo, Japan – Researchers from Tokyo Metropolitan University have engineered a range of new single-walled transition metal dichalcogenide (TMD) nanotubes with different compositions, chirality, and diameters by templating off boron-nitride nanotubes. They also realized ultra-thin nanotubes grown inside the template, and successfully tailored compositions to create a family of new nanotubes. The ability to synthesize a diverse range of structures offers unique insights into their growth mechanism and novel optical properties.

Production of TMD nanotubes.

Credit: Tokyo Metropolitan University

Tokyo, Japan – Researchers from Tokyo Metropolitan University have engineered a range of new single-walled transition metal dichalcogenide (TMD) nanotubes with different compositions, chirality, and diameters by templating off boron-nitride nanotubes. They also realized ultra-thin nanotubes grown inside the template, and successfully tailored compositions to create a family of new nanotubes. The ability to synthesize a diverse range of structures offers unique insights into their growth mechanism and novel optical properties.

The carbon nanotube is a wonder of nanotechnology. Made by rolling up an atomically thin sheet of carbon atoms, it has exceptional mechanical strength and electrical conductivity amongst a range of other exotic optoelectronic properties, with potential applications in semiconductors beyond the silicon age.

The key features of carbon nanotubes come from subtle aspects of their structure. For example, like a piece of paper rolled up at an angle, nanotubes often have a chirality, a “handedness” in their structure that makes them different from their mirror image. That is also why scientists are looking ahead to materials beyond carbon, which might enable a wider range of structures. One spotlight is on transition metal dichalcogenide (TMD) compounds, made of transition metals and Group 16 elements. Not only is there a whole family of them, TMDs have features which are not seen in carbon nanotubes, such as superconductivity and photovoltaic properties, where exposure to light generates a voltage or current.

To get to grips with the full potential of TMDs, however, scientists need to be able to make single-walled nanotubes in a variety of compositions, diameters, and chirality in a way that lets us study their individual properties. This has proven challenging: TMD nanotubes usually form in concentric multi-walled structures, where each layer might have different chirality. This makes it tricky to find out, for example, what kind of chirality gives rise to specific properties.

Now, a team led by Assistant Professor Yusuke Nakanishi from Tokyo Metropolitan University has come up with a way to do just that. By using boron-nitride nanotubes as a template, they could successfully grow a range of single-walled TMD nanotubes by adding the required elements through exposure to vapor. In previous work, they made single-walled molybdenum sulfide nanotubes. On looking at individual nanotubes in more detail, they have now distinguished a whole plethora of single-walled tubes of different diameters and chirality. Specifically, they measured the “chiral angles” of individual tubes which, taken together with their diameters, determine unique chiral structures. They discovered, for the first time, that the chiral angles of their nanotubes were randomly distributed: this means they have access to the whole range of possible angles, promising new insights into the relationship between chirality and electronic states, a key unsolved question in the field. There were also ultra-thin tubes only a few nanometers across grown inside the template, not outside, a unique platform for observing quantum mechanical effects.

By tweaking their recipe, the team has now also succeeded in switching both the metal and the chalcogen, making molybdenum selenide, tungsten selenide, and molybdenum tungsten sulfide alloy nanotubes. They even made nanotubes with one element on the outside, another on the inside, “Janus”-type nanotubes named after the two-faced god of Roman mythology. The team’s diverse new entries into the nanotube family promise bold new strides in not only our understanding of TMD nanotubes, but how exotic properties arise from their structures.

This work was supported by JSPS KAKENHI Grants (Grant Numbers JP23H01807, JP20H02572, JP21H05232, JP21H05234, JP22K04886, JP22H05468, JP22H01911, JP22H02573, JP21H05017, JP22H05469, JP23H00259, JP23K13635, JP23H00097, JP22H05441, JP21H05235, JPJSJRP20221202), the JST CREST Program (Grant Numbers JPMJCR17I5 and JPMJCR20B1) and the JST FOREST Program (Grant Number JPMJFR213X).



Journal

Advanced Materials

DOI

10.1002/adma.202306631

Article Title

Structural Diversity of Single-Walled Transition Metal Dichalcogenide Nanotubes Grown via Template Reaction

Article Publication Date

5-Oct-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Greater hydrogen production, increased ammonia and fertilizer output—all achieved with reduced energy consumption

Greater hydrogen production, increased ammonia and fertilizer output—all achieved with reduced energy consumption

August 22, 2025
NME1 Enzyme Catalyzes Its Own Oligophosphorylation

NME1 Enzyme Catalyzes Its Own Oligophosphorylation

August 22, 2025

Seamless Integration of Quantum Key Distribution with High-Speed Classical Communications in Field-Deployed Multi-Core Fibers

August 22, 2025

AI Uncovers ‘Self-Optimizing’ Mechanism in Magnesium-Based Thermoelectric Materials

August 22, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Electrochemical Hybrid Flow Cell Captures CO2 Directly

CrAAVe-seq reveals key neuronal genes in vivo

Blocking Spermine Metabolism Boosts Pancreatic Cancer Immunity

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.