• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Mouse study reveals potential drug target for arthritis caused by chikungunya virus

Bioengineer by Bioengineer
February 16, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Wilson et al. (2017)

An immune system proteinase called granzyme A appears to promote arthritic inflammation in mice infected with chikungunya virus, scientists report in a new PLOS Pathogens study. The study also suggested that granzyme A could serve as a potential target for new drugs to treat chikungunya and related viral arthritides in people.

Chikungunya virus is transmitted by mosquitoes, with a recent epidemic causing millions of cases globally. While it is rarely fatal, chikungunya can cause severe, chronic polyarthritis (inflammation in multiple joints) and/or polyarthralgia (pain in multiple joints). Current standard anti-inflammatory drug treatment can relieve these symptoms, but they are often not particularly effective.

To aid research into potential new treatments, Jane Wilson and Natalie Prow of QIMR Berghofer Medical Research Institute, Australia, and colleagues exploited an adult wild-type mouse model of chikungunya virus infection and diseases previously developed by the group. In the new study, they use RNA-Seq technology to examine in detail the mouse inflammatory responses to infection. They found that genes activated in the mouse model closely mirrored genes known to be activated in infected humans, providing a level of validation of the model.

Particularly prominent in the RNA-Seq analysis was the up-regulation of a number of granzymes, a group of proteinases secreted by immune cells that were originally thought to be involved in killing (via apoptosis) virus infected cells or other target cells. However, an emerging consensus supported by the new PLOS Pathogens study, is that some granzymes (particularly granzyme A and K) have a role in promoting inflammation.

Exploring further, the scientists showed that mice missing the granzyme A gene, when infected with chikungunya virus, experienced dramatically less foot swelling and arthritis. Furthermore, treating mice with a granzyme A inhibitor also significantly reduced foot swelling and arthritis.

They also found elevated granzyme A levels in blood samples taken from non-human primates infected with chikungunya, as well as from human chikungunya patients. Overall the findings suggest that granzyme A could serve as a potential drug target for anti-inflammatory treatments for chikungunya — and perhaps also for other inflammatory diseases. Further research will be needed to explore this potential and determine how well the new findings can be extended from mice to humans.

###

In your coverage please use this URL to provide access to the freely available article in PLOS Pathogens: http://dx.doi.org/10.1371/journal.ppat.1006155

Citation: Wilson JAC, Prow NA, Schroder WA, Ellis JJ, Cumming HE, Gearing LJ, et al. (2017) RNA-Seq analysis of chikungunya virus infection and identification of granzyme A as a major promoter of arthritic inflammation. PLoS Pathog 13(2): e1006155. doi:10.1371/journal.ppat.1006155

Funding: The work was primarily funded by the National Health and Medical Research Council (NHMRC), Australia (grant APP613622) . JACW was awarded an Australian Postgraduate Award scholarship by the School of Medicine, University of Queensland. NAP was in part supported by an Advance Queensland Research Fellowship from the Queensland government. AS is a principal research fellow with the NHMRC. BSL3 equipment was funded by the Queensland Tropical Health Alliance. The NHP studies were funded by (i) "Programme d'Investissements d'Avenir" (PIA) under Grant ANR-11-INBS-0008 funding the Infectious Disease Models and Innovative Therapies (IDMIT, Fontenay-aux-Roses, France) infrastructure and (ii) the Integrated Chikungunya Research (ICRES) project of the European Union FP7 project grant agreement no. 261202. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Media Contact

PLOS Pathogens
[email protected]

Home

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

AI Analyzes Goat Carcass for Tissue Predictions

October 15, 2025
Chloroplast Genome Study of Agropyron Species Varieties

Chloroplast Genome Study of Agropyron Species Varieties

October 15, 2025

Theory-Based Activity Cuts Childhood Obesity: Review

October 15, 2025

Screen Time, Anxiety, and Brain Volume in Autism

October 15, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1243 shares
    Share 496 Tweet 310
  • New Study Reveals the Science Behind Exercise and Weight Loss

    105 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    92 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI Analyzes Goat Carcass for Tissue Predictions

Chloroplast Genome Study of Agropyron Species Varieties

Theory-Based Activity Cuts Childhood Obesity: Review

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.