• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Moths’ sweet way of compensating for lack of antioxidants

Bioengineer by Bioengineer
February 16, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Bruce D. Taubert

Animals that feed almost solely on nectar, which doesn't produce protective antioxidants, are still able to avoid experiencing oxidative damage to their muscles through a clever adaption that involves converting carbohydrates into antioxidants, a new study reveals. The results help solve a long-standing mystery as to how nectar-feeding species, which don't get an antioxidant boost through their food, are able to expend so much energy without experiencing muscle damage. When muscles expend energy, byproducts called reactive oxygen species (ROS) are released, which can damage cells. Antioxidants are important nutrients that help reduce the damage; most animals mainly attain antioxidants through their diet. Here, Eran Levin and colleagues fed hawkmoths nectar and measured levels of muscle damage after flight, compared to controls that did not consume nectar. Remarkably, the nectar-fed moths flew farther and yet experienced less oxidative damage than controls; as well, they had higher levels of an antioxidant critical for protecting cell membranes. Next, moths were fed nectar containing glucose with differently labeled carbon isotopes, allowing the researchers to track how the nectar was metabolized. Their results reveal that the moths rely on the pentose phosphate pathway (PPP) to covert carbohydrates in the form of sugar into antioxidants. Carlos Martinez del Rio and Michael E. Dillon discuss these findings and the PPP in greater detail in a related Perspective, noting that this ancient mechanism for producing antioxidants may be shared with other animals, including humans.

###

Media Contact

Science Press Package
[email protected]
202-326-6440
@AAAS

http://www.aaas.org

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

AI Analyzes Goat Carcass for Tissue Predictions

October 15, 2025
Chloroplast Genome Study of Agropyron Species Varieties

Chloroplast Genome Study of Agropyron Species Varieties

October 15, 2025

Theory-Based Activity Cuts Childhood Obesity: Review

October 15, 2025

Screen Time, Anxiety, and Brain Volume in Autism

October 15, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1243 shares
    Share 496 Tweet 310
  • New Study Reveals the Science Behind Exercise and Weight Loss

    105 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    92 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI Analyzes Goat Carcass for Tissue Predictions

Chloroplast Genome Study of Agropyron Species Varieties

Theory-Based Activity Cuts Childhood Obesity: Review

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.