• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Mosses used to evaluate atmospheric conditions in urban areas

Bioengineer by Bioengineer
August 16, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Oishi Y. and Hiura T

Researchers have developed a method to evaluate atmospheric conditions using mosses (bryophytes) in urban areas, a development that could facilitate broader evaluations of atmospheric environments.

Many urban areas face atmospheric problems such as pollution and the heat island effect. With the need to evaluate atmospheric conditions, bioindicators–organisms whose response to environmental changes indicates the health of an ecosystem–have attracted considerable attention. Their merits include being able to evaluate an environment over a wide area at a low cost; detect environmental changes over an extended period; and assess these changes' effects on the ecosystem. Bryophytes are one such group of plants known to be sensitive to environmental changes, in particular to atmospheric conditions.

The research team led by Yoshitaka Oishi of Fukui Prefectural University and Professor Tsutomu Hiura of Hokkaido University's Field Science Center for Northern Biosphere studied how bryophytes can be a tool for evaluating complex atmospheric conditions in urban areas.

The team examined Tokyo's Hachioji City, which has diverse environments ranging from developed urban areas to remote, mountainous areas. They used bryophytes to calculate four metrics related to atmospheric problems: severity of nitrogen pollution; degree of pollution from nitrogen oxides (NOx); index of atmospheric purity; and drought stress that accompanies urbanization.

The team first analyzed the responsiveness of bryophytes to the four metrics based on distribution patterns, the nitrogen content and the stable isotope ratio in bryophytes. They then factored in the type of land at the surveyed points through linear and generalized linear models to examine the usefulness and limitations of bryophytes as a bioindicator.

The team found that the degree of nitrogen pollution, which is worsening in urban areas, can be evaluated by analyzing the nitrogen content and the stable isotope ratio in bryophytes. They also found that drought-sensitive bryophytes can indicate the level of drought, which is influenced by the heat island effect. However, the team found no effective model to evaluate atmospheric purity.

"Simultaneous use of bryophyte metrics can be useful in examining the interrelations of atmospheric problems. We hope our method will enhance broader evaluations of atmospheric conditions, which could eventually prompt people to take actions that reduce their impact on the environment," says Tsutomu Hiura.

###

Media Contact

Naoki Namba
81-117-062-185
@hokkaido_uni

https://www.global.hokudai.ac.jp/

Original Source

https://www.global.hokudai.ac.jp/blog/mosses-used-to-evaluate-atmospheric-conditions-in-urban-areas/ http://dx.doi.org/10.1016/j.landurbplan.2017.07.010

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

PhET Interactive Simulations Honored with Meggers Project Award

October 30, 2025
How Protein Binding to Fraying DNA Unlocks the Mystery Behind a Global Illness

How Protein Binding to Fraying DNA Unlocks the Mystery Behind a Global Illness

October 30, 2025

UC Riverside Scientist Honored by American Federation for Aging Research

October 30, 2025

New Study Explores Crucial Hormone in Fertility Preservation for Women with Cancer

October 30, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1292 shares
    Share 516 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    202 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advancing Neuronal Regeneration with Biomaterials and Stem Cells

Leg and Foot Amputations Surge 65% in Illinois Hospitals from 2016 to 2023

Lactylation Biomarker Mechanisms in Neonatal Brain Damage

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.