• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Mosel vineyards are preparing for climate change by sharing their soil with aromatic

Bioengineer by Bioengineer
April 7, 2021
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Diverfarming

The landscape of sloping vineyards on the banks of the River Mosel in Germany is a characteristic symbol of a region, which cannot be understood without its wine: the Mosel wine region. Tourists from all over the world, especially from the neighbouring countries of Belgium, Luxembourg, and The Netherlands visit the area in search of mountains and wine. However, the lack of new generations and the increase in temperatures and short heavy summer rainfall events caused by climate change endanger the production of wine.

In this sense, the European H2020 Diverfarming Project began in 2018 the diversification of a steep-slope, very stony (up to 70%) ecological vineyard. In the majority of the vineyards, the introduction of herbaceous species for plant cover has become widespread, with herbaceous plants in the alleys between the grapevines, but beneath them, it is combated with herbicides or mechanically. With the aim of reducing soil erosion, increasing soil fertility, and mitigating the effects of greenhouse-gas emissions, a team of researchers from the Trier University (Germany) coordinated by Professor Manuel Seeger and Professor Sören Thiele-Bruhn put into practice the introduction of aromatic plants (thyme and oregano) beneath the grapevines of the ‘Weingut Dr. Frey’ wine-making company.

After three years of diversification the team formed by the researchers Felix Dittrich, Thomas Iserloh, Roman Hüppi, Sophie Ogan, Sören Thiele-Bruhn, Manuel Seeger, and the winemaking entrepreneur Cord Treseler have published the first results of the diversification on the productivity of the grapevines and the quality of the wine. These results show the potential possibilities that these practices have since they have not generated negative effects in the wine production.

Although a certain amount of competition was observed between the aromatic cover and the grapevines for water and nutrients, these effects far from being negative, give rise to thinking that they may have a positive effect on the quality of the wine, as the researcher Manuel Seeger comments. This is related to the reduction of certain nutrients: while the availability of nitrate had no change in the crop diversification, the ammonium, phosphorus, and potassium levels did decrease in the uppermost area of the soil (the first 10 cm). However, it is known that there is a certain relationship between available potassium and wine quality. The results of this study point out that a change in the availability of the mineral acidity of the soil would seem to generate an increase in the quality of these wines. Moreover, the principle of yield compensation was observed: although the yield of the grapevine is slightly lower, this is compensated by an increase in quality.

The study highlights the extreme events at climate level that have taken place over the three years of the diversification. In 2018, storms produced one month’s volume of rainfall in the zone in just one hour; whilst in 2019 and 2020 there were record high temperatures and drought. In this way, it is clear that the availability of water and the climate conditions are the most determining factor for the productivity of the vineyard. Despite that being the case, if we take the extreme conditions into account, the diversification has had no negative effects on the yield of the crop or on the quality of the wine. In standardised situations and with the long-term stabilisation of the diversification this opens the door to an increase in profits thanks to the diversification.

The conservation of the characteristic landscape of the zone, the reduction in contaminant emissions, and the increase in biodiversity both in the soil as well as in other organisms such as insects will contribute added value to this sector, which is currently open to changes that enable it to face this lack of a generational substitution and the scenarios which the effects of climate change are expected to bring. All of this is to save the future of the Mosel wine.

###

Diverfarming is a project financed by the Horizon 2020 Programme of the European Commission, within the challenge of “Food Security, Sustainable Agriculture and Forestry, Marine, Maritime and Inland Water Research and the Bioeconomy” under agreement 728003, and which counts on the participation of the Universities of Cartagena and Córdoba (Spain), Tuscia (Italy), Exeter and Portsmouth (United Kingdom), Wageningen (Netherlands), Trier (Germany), Pecs (Hungary) and ETH Zurich (Switzerland), the research centres Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (Italy), the Consejo Superior de Investigaciones Científicas (Spain) and the Natural Resources Institute LUKE (Finland), the agrarian organisation ASAJA, and the companies Casalasco and Barilla (Italy), Arento, LogísticaDFM and Industrias David (Spain), Nieuw Bromo Van Tilburg and Ekoboerdeij de Lingehof (Netherlands), Weingut Dr. Frey (Germany), Nedel-Market KFT and Gere (Hungary) and Paavolan Kotijuustola and Polven Juustola (Finland).

Media Contact
Elena Lázaro
[email protected]

Related Journal Article

http://dx.doi.org/10.3390/agriculture11020095

Tags: Agricultural Production/EconomicsAgriculturePlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Meet the Creature with the Highest Chromosome Count: A Genetic Marvel Unveiled

September 10, 2025
Designed to Learn: How Early Brain Structure Sets the Stage for Efficient Learning

Designed to Learn: How Early Brain Structure Sets the Stage for Efficient Learning

September 10, 2025

Unraveling the Mysteries of APS Vasculopathy

September 10, 2025

BD² Launches New Funding Initiatives Targeting the Biology of Bipolar Disorder

September 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    59 shares
    Share 24 Tweet 15
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Rare Gene Variant Linked to Alzheimer’s Disease, MIT Study Reveals

Brain Lung Cancer Cells Create Electrical Links with Neurons, Driving Tumor Growth

Discovery of “Brain Dial” Mechanism Influencing Consumption Behavior in Mice

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.