• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Monkeys eat fats and carbs to keep warm

Bioengineer by Bioengineer
June 8, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: David Raubenheimer

University of Sydney researchers have found monkeys living in the wild in cold snowy habitats adjust their nutrient intake to match the elevated costs of thermoregulation.

China's Quinling mountains, high altitude temperate forests where winter temperatures commonly drop below 0 degrees Celsius and approximately 50 cm of snow covers the ground for several weeks in the winter, was the location of the study.

Published in Functional Ecology, the researchers analysed the nutritional content of all foods the monkeys consumed in order to calculate the nutrient composition of the monkeys' diets, and then assessed the additional energy the monkeys used to regulate their temperature in winter compared with spring.

Professor David Raubenheimer, the University of Sydney's Leonard P Ullmann Chair in Nutritional Ecology at the School of Life and Environmental Sciences and Charles Perkins Centre, conducted the study's nutritional modelling using nutritional geometry, a multidimensional framework that explores how animals balance the ingestion of multiple nutrients.

"To better understand the adaptations that enable these monkeys to live and thrive in such a harsh environment – among the coldest for any primate – we tested how they cope with additional energetic costs of keeping warm in winter," Professor Raubenheimer said.

"Our study controlled for food availability using supplementary foods to ensure that food was abundant throughout the year and the amounts eaten in winter and spring were due to the animals' own choices rather than ecological restrictions on what was available to eat.

"The monkeys ate twice as much energy in winter compared to spring. Remarkably, the additional intake in winter came entirely from fats and carbohydrates, with protein intake remaining the same."

Temperature modelling was overseen by Associate Professor Ollie Jay, from the University's Faculty of Health Sciences and Charles Perkins Centre.

"Winter was shown to impose significant thermoregulatory energetic challenges for these animals," Associate Professor Jay said.

"Using thermal imaging photographs, we measured the monkeys' surface temperature at specific points on their bodies. Taking into account additional factors such as wind speed and environmental temperature, these measures were used to calculate heat lost from the body."

The seasonal difference in energy intake closely matched the seasonal difference in the daily energetic costs of thermoregulation, Professor Raubenheimer explained.

"Amazingly, we found that the additional heat lost by monkeys in winter compared with spring almost exactly matched the additional energy they ate in winter in the form of fats and carbs," Professor Raubenheimer said.

"This provides strong evidence golden snub-nosed monkeys forage selectively to balance the macronutrient content of their diet, but also change the balance to meet changes in the nutrients needed – in this case for generating body heat.

"A helpful way to think about this is from the other direction- the monkeys ate half the fats and carbs in spring compared to winter. Since foods were available for them also to have high fat and carb intake in spring, and yet they abstained, this shows that they balance their nutrient intake to meet specific nutritional needs.

"It also raises significant questions about another species of primate, that clearly does not manage its intake quite so well – our own species," said Professor Raubenheimer.

This study forms part of a broader research program in which Professor Raubenheimer is studying many species of non-human primates in the wild to help understand the reasons that humans are so vulnerable to over-eating, obesity and associated disease.

###

The research was a collaboration between the University of Sydney's Charles Perkins Centre and School of Life and Environmental Sciences; Northwest University, China; University of Illinois at Urbana-Champaign, US; Instituto de Investigaciones en Ecosistemas, Mexico; Massey University, New Zealand; and the Xi'an Branch of Chinese Academy of Sciences.

Media Contact

Rachel Fergus
[email protected]
61-293-512-261
@SydneyUni_Media

http://www.usyd.edu.au/

Original Source

https://sydney.edu.au/news-opinion/news/2018/06/08/monkeys-eat-fats-and-carbs-to-keep-warm.html http://dx.doi.org/10.1111/1365-2435.13134

Share12Tweet8Share2ShareShareShare2

Related Posts

Stefan Kappe, Ph.D., Renowned Malaria Researcher, Named Director of UM School of Medicine’s Center for Vaccine Development and Global Health

Stefan Kappe, Ph.D., Renowned Malaria Researcher, Named Director of UM School of Medicine’s Center for Vaccine Development and Global Health

September 8, 2025

TriCAM Study Explores Complementary Medicine in Stem Cell Transplants

September 8, 2025

PRMT1 Protein Mitigates Brain Damage After Ischemia by Inhibiting RIPK1-Driven Cell Death Pathways

September 8, 2025

New C-3-Substituted Oleanolic Acid Benzyl Amide Shows Promise Against Influenza A by Inhibiting PA–PB1 Interaction and Regulating Macrophage Inflammation

September 8, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Open-Source Data Platform Launched to Advance Lung Cancer Genetics Research

AI Reveals Stress Levels in Farmed Amazonian Fish, New Study Shows

Overcoming Resistance Mutations and the Blood–Brain Barrier: Major Challenges in Targeted Therapy for Brain Metastases in Non-Small Cell Lung Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.